
ibm.com/redbooks Redpaper

IBM® WebSphere® Front cover

IBM Operational Decision
Management V8.0
Performance Tuning Guide

David Granshaw
Daniel McGinnes

Pierre-Andre Paumelle

Design choices for events and business
rule applications

Runtime tuning for events and rule
applications

Tuning for Decision
Center

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM Operational Decision Management V8.0
Performance Tuning Guide

January 2013

REDP-4899-00

© Copyright International Business Machines Corporation 2013. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (January 2013)

This edition applies to IBM WebSphere Operational Decision Management Version 8.0 and IBM Operational
Decision Manager V8.0.1.

This document was created or updated on January 29, 2013.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team who wrote this paper . ix
Now you can become a published author, too! .x
Comments welcome. .x
Stay connected to IBM Redbooks .x

Chapter 1. Overview . 1
1.1 IBM Operational Decision Management . 2
1.2 Publication structure . 2

Chapter 2. General performance tuning . 5
2.1 Hardware and monitoring . 6
2.2 Tuning the Java virtual machine (JVM). 6

2.2.1 Garbage collection policies . 6
2.2.2 Java heap size . 7
2.2.3 JVM preferred settings . 7

Chapter 3. Decision Server Events: Designing for performance 11
3.1 High-level considerations for optimal design. 12
3.2 Optimizing throughput by minimizing disk access. 12

3.2.1 Decision Server disk access points. 12
3.2.2 Additional disk access points . 15

3.3 Performance impact of durability. 15
3.4 Relative performance of simple and complex event rules. 16

3.4.1 Simple event rules . 16
3.4.2 Simple event rules with a context ID . 16
3.4.3 Complex event rules . 17

3.5 Event rule ordering . 17
3.6 Context scoped business objects . 19

3.6.1 Memory usage . 20
3.6.2 CSBO performance. 21

3.7 Multiple event rules and synthetic events . 22
3.7.1 Event rule descriptions . 22

3.8 Impact of the technology connectors on performance . 23

Chapter 4. Decision Server Events: Run time performance tuning 25
4.1 High-level considerations for run time tuning . 26
4.2 Tuning the number of event rule processing threads . 26
4.3 The impact of history on performance. 28

4.3.1 Recording history . 29
4.3.2 Performance impact of history . 29
4.3.3 Tuning history processing . 30

4.4 The impact of logging and tracing . 31
4.4.1 Configuring trace and log files . 31
4.4.2 Performance impact of tracing . 32

4.5 Relative performance of the JMS providers . 33
© Copyright IBM Corp. 2013. All rights reserved. iii

4.5.1 WebSphere Application Server default messaging vs WebSphere MQ 33
4.5.2 Retrieving events from WebSphere MQ . 34

4.6 Tuning JMS messaging provider: WebSphere Application Server default messaging . 35
4.6.1 Concurrent processing: WebSphere Application Server default messaging. 35
4.6.2 Miscellaneous WebSphere Application Server default messaging tuning 36

4.7 Tuning the JMS messaging provider: WebSphere MQ JMS messaging 37
4.7.1 Tuning the queue manager. 37
4.7.2 Tuning the WebSphere Application Server for WebSphere MQ JMS. 40

4.8 Database tuning . 42
4.8.1 General tuning . 42
4.8.2 Database entry management . 42

4.9 High availability and high performance . 43
4.9.1 High availability and performance when using WebSphere Application Server default

messaging . 43
4.9.2 High availability and performance when using WebSphere MQ as the messaging

provider. 46
4.9.3 Tuning for large clusters . 48
4.9.4 Disabling the WatchReset Message Driven Bean . 49

4.10 Technology connectors tuning . 50
4.10.1 Increasing the concurrency of the action connectors . 51
4.10.2 Using a selector to retrieve actions from the action topic 51
4.10.3 Controlling the batch size for the JDBC event connector 52
4.10.4 Controlling the File System event connector event delivery rate 53
4.10.5 Distributing events across a cluster when using the JDBC and File System

technology connectors with WebSphere Application Server default messaging . 53
4.11 Monitoring performance . 54

4.11.1 Performance Monitoring Infrastructure (PMI) . 54
4.11.2 Service Integration Bus Performance tool. 54
4.11.3 Service Integration Bus Explorer tool . 55
4.11.4 WebSphere MQ Explorer Tool . 55
4.11.5 Hardware monitoring. 55

4.12 Advice on benchmarking applications. 55
4.13 Diagnosing performance problems . 56

4.13.1 Obtaining diagnostic information. 56
4.13.2 The number of messages on the event destination is growing over time 57
4.13.3 Other potential performance issues . 59

Chapter 5. Decision Server Rules: Rule Designer tuning . 61
5.1 Tuning of build. 62
5.2 Tuning of the synchronization . 63
5.3 Guidelines for benchmarking an application . 64
5.4 Analyzing the rule project characteristics . 64

Chapter 6. Decision Server Rules: Rule engine execution tuning 65
6.1 Overview of the rule engine . 66
6.2 Academic benchmarks usage . 66
6.3 Rule engine execution mode choice . 67

6.3.1 Types of objects used by your rules . 68
6.3.2 Impact of rule actions . 69
6.3.3 Impact of tests in rule conditions. 70
6.3.4 Impact of priorities set on rules . 70
6.3.5 Impact of business user role . 70
6.3.6 Performance goals . 70
iv IBM Operational Decision Management V8.0 Performance Tuning Guide

6.4 Tips and tricks for business rule applications . 71
6.5 Rule engine performance cost breakdown . 72

Chapter 7. Decision Server Rules: Rule Execution Server tuning 75
7.1 Features of the Rule Execution Server . 76
7.2 Basic configuration for good performance . 77
7.3 Impact of ruleset characteristics on performance . 77
7.4 Hints . 78

7.4.1 Impact of ruleset XOM on performance . 78
7.4.2 Impact of execution mode on performance (trace and Decision Warehouse) . . . 78
7.4.3 Architecture of your application choice (Engine, JSE, or Java EE Rule Execution

Server) . 80
7.4.4 Impact of topology on performance (JSE embedded, Java EE shared, Java EE

isolated) . 80
7.4.5 Optimization of the XU pool size and parsing . 81
7.4.6 Rule Execution Server and clustering . 81

7.5 Analyzing the status of the Rule Execution Server . 82
7.5.1 Retrieving ruleset caching details from Rule Execution Server Console 82

7.6 Performance of Rule Execution Server with sequential algorithm 84
7.6.1 Execution of ruleset through a POJO rule session using a Java XOM. 84
7.6.2 Execution of ruleset through a POJO rule session using an XML XOM 84
7.6.3 Ruleset performance comparison of XML XOM and Java XOM. 85
7.6.4 Execution with HTDS (web service invocation). 85
7.6.5 Loading time with the sequential algorithm. 85
7.6.6 Conclusion . 86

7.7 Performance of Rule Execution Server with fastpath algorithm 86
7.7.1 Performance comparison of XML XOM and Java XOM and ruleset sizes using

fastpath . 86
7.7.2 Performance comparison of sequential and fastpath algorithms 87
7.7.3 Loading time with the fastpath algorithm. 87
7.7.4 Conclusion . 88

7.8 Performance of Rule Execution Server with RetePlus algorithm 88
7.8.1 Performance comparison of XML XOM and Java XOM and ruleset sizes using

RetePlus . 88
7.8.2 Performance comparison of sequential and RetePlus algorithms 88
7.8.3 Loading time with the RetePlus algorithm. 89
7.8.4 Conclusion . 89

7.9 Performance impact of the number of concurrent users . 89
7.9.1 Conclusion . 89

Chapter 8. Decision Server Rules: Tuning Decision Warehouse 91
8.1 Decision Warehouse interface . 92
8.2 Decision Warehouse features . 92
8.3 Impact of the Decision Warehouse on rule execution . 93
8.4 Optimization of the Decision Warehouse . 94

Chapter 9. Decision Server Rules: Decision Validation Services tuning. 97
9.1 Overview of Decision Validation Services. 98
9.2 Recommendations for DVS usage . 98

9.2.1 Hints . 99
9.2.2 Decision Warehouse optimization. 99

9.3 Recommendations to optimize big simulations . 100
 Contents v

Chapter 10. Decision Center tuning . 101
10.1 Decision Center consoles . 102
10.2 Manage rules across the enterprise with confidence . 102
10.3 General guidelines and considerations on Decision Center 103
10.4 Memory footprint of Decision Center. 103

10.4.1 Memory consumption and ruleset generation . 103
10.4.2 Hints . 104

10.5 CPU of Decision Center . 104
10.6 Tuning to maintain database performance for Decision Center 104
10.7 Tuning of Decision Center. 105

10.7.1 Installation options . 105
10.7.2 Project options . 107
10.7.3 Performance improvements for Decision Center . 108

Related publications . 111
IBM Redbooks . 111
Online resources . 111
Help from IBM . 112
vi IBM Operational Decision Management V8.0 Performance Tuning Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2013. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

DB2®
developerWorks®
IBM®

ILOG®
Redbooks®
Redpaper™

Redbooks (logo) ®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii IBM Operational Decision Management V8.0 Performance Tuning Guide

http://www.ibm.com/legal/copytrade.shtml

Preface

IBM® Operational Decision Management (ODM) is a family of products used by IT and
business users to create and manage business decision logic throughout their organization.
This IBM Redpaper™ publication offers advice on all aspects of performance, including
hardware, architecture, authoring, quality of service, monitoring, and tuning. The advice is
based upon preferred practices and experience gained from real customer situations.

This paper is aimed at a wide ODM audience, including IBM employees and customers, and
provides useful information to both new and experienced users.

Although the product family is known as IBM WebSphere® Operational Decision
Management (WODM), at V8.0, with V8.0.1 the the name is now simply IBM Operational
Decision Manager (ODM). The performance information in this paper is based on V8.0 of this
product family and differences introduced with V8.0.1 are pointed out.

The team who wrote this paper

David Granshaw is a Senior Engineer and WODM performance architect at the IBM Lab in
Hursley, UK. He previously led the WebSphere Application Server default messaging
performance team and has worked on performance across a number of products in the
WebSphere portfolio. Before joining IBM, David was a Senior Scientist, working for ten years
in government scientific research.

Daniel McGinnes is a Performance Specialist at the IBM Lab in Hursley, UK. He currently
works on measuring and tuning performance of Operational Decision Management. Daniel
previously worked on the performance of other WebSphere portfolio products, including
WebSphere Business Events, WebSphere Application Server and WebSphere Enterprise
Service Bus. He has also worked as an IT specialist providing consulting services to IBM
customers across EMEA and USA.

Pierre-Andre Paumelle is a Performance Architect in Operational Decision Management
with over 15 years of experience designing and developing enterprise applications with C++
and Java (Java EE). He worked with clients for eight years as a consultant on IBM ILOG®
products, especially those products in the BRMS product line. Pierre-Andre has worked for
five years as the architect and team lead on the Enterprise Integration (BRMS) team
responsible for Rules Execution Server, Decision Warehouse, and Decision Validation
Services.

A special thank you to Dan Selman for his contribution to the Rule Designer and Rule engine
chapters.

Daniel Selman is a Software Architect and a team lead for IBM WebSphere ILOG JRules
Rule Studio, which is a rule development environment for technical users that is based on the
Eclipse platform. He has worked as an Architect and Product Manager on a variety of Java C,
C++, and Java EE applications. Daniel blogs at:

https://www.ibm.com/developerworks/mydeveloperworks/blogs/brms/?lang=en
© Copyright IBM Corp. 2013. All rights reserved. ix

https://www.ibm.com/developerworks/mydeveloperworks/blogs/brms/?lang=en

Thanks to the following people for their contributions to this project:

Carla Sadtler, Deana Coble, Linda Robinson
International Technical Support Organization, Raleigh Center

Tim Galvin, IBM Littleton

Lewis Evans, IBM Hursley

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks® publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806
x IBM Operational Decision Management V8.0 Performance Tuning Guide

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xi

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xii IBM Operational Decision Management V8.0 Performance Tuning Guide

Chapter 1. Overview

This chapter introduces IBM Operational Decision Management (ODM) and discusses the
overall structure of the book.

This chapter includes the following topics:

� IBM Operational Decision Management
� Publication structure

1

© Copyright IBM Corp. 2013. All rights reserved. 1

1.1 IBM Operational Decision Management

IBM Operational Decision Management (ODM) is a family of products that are used by IT and
business users to create and manage business decision logic that is used throughout their
organizations. It enables businesses to respond to real-time data with intelligent, automated
decisions.

Operational Decision Management consists of two key components:

� WebSphere Decision Center provides an integrated repository and enables management
of business rule and event-based logic. It provides comprehensive decision governance,
allowing IT and business users to work collaboratively across an entire organization.

� WebSphere Decision Server provides Eclipse-based tooling and high performance run
times, Decision Server Rules, and Decision Server Events, for rule and event processing.

This book offers advice on all aspects of performance, including hardware, architecture,
authoring, quality of service, monitoring, and tuning. The advice is based upon preferred
practices and experience gained from real customer situations.

1.2 Publication structure

The following list summarizes each chapter of this document:

� Chapter 1, “Overview” on page 1

The current chapter presents an overview of the book.

� Chapter 2, “General performance tuning” on page 5

This chapter discusses some general performance tuning advice that is applicable to
Decision Server Rules, Decision Server Events, and Decision Center. The key topics are
hardware, monitoring, and JVM tuning.

� Chapter 3, “Decision Server Events: Designing for performance” on page 11

This chapter discusses the options available when writing projects with Event Designer
and demonstrates the performance impact of those choices. The key topics are durability,
simple versus complex event rules, rule ordering, and complex scoped business objects.

� Chapter 4, “Decision Server Events: Run time performance tuning” on page 25

This chapter discusses the tuning of the Decision Server Events run time. It includes the
tuning of threads, databases, messaging providers, and technology connectors. It also
covers cluster topologies, history, tracing, monitoring, testing, and diagnosis of
performance issues.

� Chapter 5, “Decision Server Rules: Rule Designer tuning” on page 61

This chapter discusses the options available when writing projects with Rule Designer.
The key topics are build tuning, synchronization, benchmarking, and analysis of rule
characteristics.

� Chapter 6, “Decision Server Rules: Rule engine execution tuning” on page 65

This chapter discusses the run time tuning of the rule execution engine. The key topics are
academic benchmarks, execution modes, and tips and tricks for business rule
applications.
2 IBM Operational Decision Management V8.0 Performance Tuning Guide

� Chapter 7, “Decision Server Rules: Rule Execution Server tuning” on page 75

This chapter discusses the run time tuning of the rule execution server. The chapter
covers the performance impact of the executable object model (XOM), trace, Decision
Warehouse, topology and the rule processing algorithm. It also covers architecture
choices, tuning, and benchmarking.

� Chapter 8, “Decision Server Rules: Tuning Decision Warehouse” on page 91

Decision Warehouse traces decisions in production applications, storing results of rule
sets executed outside of Decision Validation Services. This chapter discusses the
features, tuning, and performance impact of Decision Warehouse.

� Chapter 9, “Decision Server Rules: Decision Validation Services tuning” on page 97

Decision Validation Services is used to test and validate rule scenarios. This chapter
discusses recommendations and tuning.

� Chapter 10, “Decision Center tuning” on page 101

WebSphere Decision Center is an integrated repository and management of business rule
and event-based logic. This chapter discusses the tuning of Decision Center.
Chapter 1. Overview 3

4 IBM Operational Decision Management V8.0 Performance Tuning Guide

Chapter 2. General performance tuning

This chapter discusses general performance tuning for IBM Operational Decision
Management Version 8.0 software. Operational decision management is business rules
software that simplifies and automates the process of authoring, changing, and executing
operational decisions. The concepts covered in this chapter are applicable to Decision Server
Rules, Decision Server Events, and Decision Center. These components work together as a
part of IBM Operational Decision Management software. In combination, these components
streamline operational decisions by enabling users to define, change, and test business rules
and events.

This chapter covers the following topics:

� Hardware and monitoring

� Tuning the Java virtual machine (JVM)

2

© Copyright IBM Corp. 2013. All rights reserved. 5

2.1 Hardware and monitoring

The choice of hardware is one of the most critical factors affecting performance and it is
important to ensure that the hardware is correctly sized for the expected workload.

Once the hardware has been chosen, it is important to monitor the cpu utilization, disk IO,
network IO, memory, and paging. Monitoring is conducted while the system is running a
representative workload to identify any performance bottlenecks. These statistics can be
measured with operating-system-specific tools such as perfmon for Windows, or iostat or
vmstat for Linux and UNIX. Understanding the performance bottlenecks allows tuning to be
targeted where it provides the greatest benefit.

2.2 Tuning the Java virtual machine (JVM)

JVM tuning is important because Decision Server Rules and Decision Server Events are both
Java Platform, Enterprise Edition (Java EE) applications that run on WebSphere Application
Server. Optimal performance is therefore dependent upon the correct tuning of Decision
Server, WebSphere Application Server, and the underlying JVM. Two key aspects of JVM
tuning are the garbage collection policy and the JVM heap size. The JVM heap is an area of
memory where objects used in a Java program are allocated.

2.2.1 Garbage collection policies

When the Java heap is insufficient and unable to satisfy a request for storage, such as object
creation, the underlying JVM automatically triggers garbage collection to free memory. The
key garbage collection policy choices are considered in the following list:

� Optthruput Garbage Collection (default prior to WebSphere Application Server V8)

The Optthruput policy uses a single Java heap and will consume the entire heap before
pausing the application and invoking a garbage collection.

� Optavgpause Garbage Collection

The Optavgpause policy also uses a single heap but performs as much garbage collection
processing as possible in parallel with application processing. This reduces the time that
the application is paused during garbage collection.

� Generational Garbage Collection (default in WebSphere Application Server V8)

The Generational policy uses two Java heaps, one for short-lived objects (nursery heap)
and one for longer-lived objects (tenured heap). The two heaps can garbage collect
independently, which improves overall efficiency. Relative to Optthruput, efficiency is
improved typically by 5% for Operational Decision Management workloads.

� Balanced Garbage Collection (new in WebSphere Application Server V8)

The Balanced policy is new in WebSphere Application Server V8 and splits the Java heap
into regions that can be collected independently. It is designed to reduce the occasional
long pause times that can be associated with large heaps. However, the Balanced policy
produces a slight performance degradation relative to generational garbage collection. It is
designed for 64-bit WebSphere Application Servers with heaps greater than 4 GB.

Note: Generational Garbage Collection is the default for WebSphere Application Server
V8 and is the preferred choice for most Operational Decision Management applications.
6 IBM Operational Decision Management V8.0 Performance Tuning Guide

2.2.2 Java heap size

If the Java heap is too small, then garbage collection will occur too frequently, consuming a
significant number of cycles reanalyzing the heap. Conversely, if the heap is too large, long
pause times will occur each time the heap is analyzed and garbage collected (unless you are
using the Balanced Garbage Collection policy).

Care must be taken to ensure that the chosen heap size does not cause paging. Paging can
occur if there is insufficient RAM to support the heap size in addition to the other processes
running on the system. As a result, performance will be significantly degraded because data
must to be continually written and read from disk rather than main memory. Paging can be
monitored using system-specific tools such as perfmon (Window servers) or vmstat (Linux,
UNIX). If significant paging does occur, consider reducing the heap size, adding more system
memory, and shutting down any unnecessary processes running on the system. If Decision
Server Events is using a local repository database, consider moving the database to a remote
system to reduce memory contention.

2.2.3 JVM preferred settings

The default, Generational garbage collection policy, is the preferred policy for most
Operational Decision Management applications and is tuned with three key properties. Those
properties are minimum heap size, maximum heap size, and nursery size (the nursery must
be smaller than the minimum heap size). The optimal configuration will depend upon the
nature of the workload and the available memory. Table 2-1 shows values that are generally
suitable for a range of ODM workloads.

Table 2-1 JVM settings

The first two parameters set the initial and maximum heap size. The third parameter sets the
generational garbage collection policy and the size of the nursery heap. The nursery is used
for short-lived objects; the remainder of the heap will be used for longer-lived objects.

The parameters can be set using the WebSphere Application Server administration console.
To set them, select Application Servers server 1 Java and Process Management
Process Definition Java Virtual Machine.

32-bit JVM
with 32 GB User Address Space
limit (for example, Windows 32 or
zLinux 31)

64-bit JVM

Initial heap size 1280 MB 4096 MB

Maximum heap size 1280 MB 4096 MB

Generic JVM arguments -Xgcpolicy:gencon -Xmn1024M -Xgcpolicy:gencon -Xmn2048M
Chapter 2. General performance tuning 7

http://publib.boulder.ibm.com/infocenter/dmanager/v7r5/topic/com.ibm.wbe.admin.doc/doc/pruningthewbestepstable.html

Figure 2-1 shows how these properties are set in the WebSphere Application Server console
for a 64-bit JVM.

Figure 2-1 General JVM tuning on a 64-bit operating system

Additional information about IBM JVM tuning, together with advice on Solaris and HP-UX
JVMs, can be found in the WebSphere Application Server Information Center:

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was
-express-dist&topic=container_tune_jvm

If IBM Operational Decision Management is running on IBM z/OS®, consider tuning both the
adjunct and servant JVMs.
8 IBM Operational Decision Management V8.0 Performance Tuning Guide

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-express-dist&topic=container_tune_jvm
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-express-dist&topic=container_tune_jvm
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-express-dist&topic=container_tune_jvm
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-express-dist&topic=container_tune_jvm
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-express-dist&topic=container_tune_jvm
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-express-dist&topic=container_tune_jvm

If the warmup of a Rule Execution Server is taking a long time, consider the following hints
when configuring the JIT:

– The JVM supplied with WebSphere Application Server version 8.0.0.3 generates more
JIT code than previous versions. More JIT code can lead to longer warm-up times and
lower throughput.

– The JIT can take time to compile a large rule set, but this behavior can be modified by
increasing the JIT cache or by limiting the inlining on ODM classes. The following list
shows both options:

• Cache size and number compilation threads:

-Xjit:codeTotal=261072 compilationThreads=1

• Limit the inlining for one of the ODM packages:

-Xjit:{ilog/rules/engine/sequential/generated/*}(disableInlining)
Chapter 2. General performance tuning 9

10 IBM Operational Decision Management V8.0 Performance Tuning Guide

Chapter 3. Decision Server Events:
Designing for performance

Decision Server Events is the business event processing module of Decision Server. This
module enables businesses to detect, evaluate, and respond to event patterns. This chapter
discusses the options available when writing projects with Event Designer and demonstrates
the performance impact of those choices.

This chapter covers the following topics:

� High-level considerations for optimal design

� Optimizing throughput by minimizing disk access

� Performance impact of durability

� Relative performance of simple and complex event rules

� Event rule ordering

� Context scoped business objects

� Multiple event rules and synthetic events

� Impact of the technology connectors on performance

3

© Copyright IBM Corp. 2013. All rights reserved. 11

3.1 High-level considerations for optimal design

A number of design choices affect the performance of a Decision Server Events system. This
section provides suggestions for optimal design. Each of the concepts identified here is
covered in more detail later in this chapter. The following list outlines options and resources
for your consideration during the design process:

� Ensure that you understand how your design will affect disk usage and seek to minimize
disk access where possible. See 3.2, “Optimizing throughput by minimizing disk access”
on page 12.

� Ensure that you are using appropriate durability for Events and Actions. See 3.3,
“Performance impact of durability” on page 15.

� When designing your project, ensure that context IDs and context scoped business
objects are used appropriately; order your filters for optimal performance. See 3.4,
“Relative performance of simple and complex event rules” on page 16 and 3.5, “Event rule
ordering” on page 17.

� When using non-persistent context scoped business objects, consider using generational
garbage collection with a tenured heap that is large enough to contain all the context
scoped business object (CSBO) data. See 3.6.1, “Memory usage” on page 20.

� Where possible, send events in the native Decision Server format directly to the default
JMS event destination. This avoids the need to use the event connectors for protocol
conversion and message transformation. Similarly, consider receiving actions in the native
Decision Server Events format directly from the default JMS action topic. See 3.8, “Impact
of the technology connectors on performance” on page 23.

3.2 Optimizing throughput by minimizing disk access

At several points during processing, Decision Server Events persists data to disk or reads
data from disk. This is required for a number of reasons, such as, the provision of durable
processing, recording history, logging or tracing, and the storage and retrieval of runtime
data. Minimizing disk access significantly improves performance. The following section
discusses the reasons why disk access can occur. For optimal performance, ensure disks are
only accessed when strictly necessary.

3.2.1 Decision Server disk access points

Figure 3-1 on page 13 shows the reasons why Decision Server Events requires disk access
(the numbered disk access points are used in the following discussion).
12 IBM Operational Decision Management V8.0 Performance Tuning Guide

Figure 3-1 Decision Server Events disk access points

� JMS provider (numbers 1 and 9 in Figure 3-1) - persisting events and actions

All events and actions are placed on a JMS queue or topic immediately before event
processing and after an action has been fired. This is also true when technology
connectors are used. The one exception is events that are delivered by a WebSphere
eXtreme Scale client, which delivers events directly to an internal, non-JMS queue. The
WebSphere eXtreme Scale client is outside the scope of this document.

The JMS provider writes events and actions to disk if processing is durable or if a large
number of non-durable events or actions are currently in memory. The durability of events
has a significant impact on performance, as discussed in 3.3, “Performance impact of
durability” on page 15.

� Logging and tracing (number 3 in Figure 3-1)

Logging and tracing have a significant impact on performance and should be minimized or
eliminated wherever possible. The performance implications of enabling trace are covered
in 4.4, “The impact of logging and tracing” on page 31.

� User-defined databases and files (number 2 in Figure 3-1)

Increased disk utilization will occur if events and actions require access to a local user
database, for example, database fetches in a business object for event and action
augmentation. If you are using a local database and experiencing disk contention or the
Decision Server Events server is close to 100% CPU utilization, consider moving these
databases to a remote machine with fast disk drives.

� History (number 5 in Figure 3-1)

When history is enabled, a significant amount of information about events, actions, and
filters is written to the Decision Server Events repository. Unless strictly required, history
should be disabled. The performance implications of enabling history are covered in 4.3,
“The impact of history on performance” on page 28.

� Defining a context ID on event rules (number 7 in Figure 3-1)

When event rules and event rule groups have a context relationship defined, each
processed event must write a small amount of context information to the Decision Server

Store event
(if received on

durable event topic)

Store action
(if "reliable")

Write history data
(if history enabled)

Read / write
time delayed

events/actions
(if delays used)

Write trace data
(if trace enabled)

1 3 5

Decision Server Events
internal queue

(if durable)

Augment events and
actions from user database

(if required)

Store and retrieve
information about

current and previous
events (if context ID

used in rule)

Store and retrieve
persistent cross

event data

2 4 7

8 9

6

Events ActionsDecision Server Events Processing

JMS
topic

JMS
topic
Chapter 3. Decision Server Events: Designing for performance 13

Events repository database. This context information is retrieved during rule processing to
determine the temporal relationship between events. To reduce disk utilization and
improve performance, define context relationships only if absolutely necessary, such as
when the processing of the events has a dependency on previous or future events. The
performance impact of using context relationships is covered in 3.4, “Relative performance
of simple and complex event rules” on page 16.

� Context scoped business objects (number 4 in Figure 3-1)

Context scoped business objects (CSBO) can be used to share business data between
multiple events in the same context. Examples of CSBOs are holding an average balance
(CSBO summary object) or keeping track of the last three cash withdrawals for each
customer (CSBO array object). The number of entries in a CSBO array can be restricted
by time or by explicitly setting a limit on the number of entries allowed in the array. The
performance impact of using CSBOs is covered in 3.6, “Context scoped business objects”
on page 19.

� Time-delayed events and actions (number 8 in Figure 3-1)

Events and actions can be either executed immediately or delayed and executed later.
When time delays are used, they cause events and actions to be written to the Decision
Server Events repository database, where they are held until the required execution time.
Adding time delays therefore increases database and disk usage. Figure 3-2 shows an
example where actions are delayed by 10 minutes. If you are using a local repository
database and experiencing disk contention, or close to 100% CPU utilization, consider
moving the repository to a remote server with fast disk drives.

Figure 3-2 Time Delays in an Event Rule

� Decision Server Events internal queue (number 6 in Figure 3-1 on page 13)

If events are sent directly to the Decision Server durable event destination or if event
connectors are set to reliable, event data is written to disk. Event data is queued to be
written between the preprocessing (xml parsing and Context ID evaluation) and final rule
processing. This is an internal queue and ensures durability in the event of a hardware or
software failure. If you are experiencing disk contention, consider installing faster disk
drives (RAID/SAN) for Decision Server Events.
14 IBM Operational Decision Management V8.0 Performance Tuning Guide

3.2.2 Additional disk access points

Technology connectors are internal system components that provide codeless connection to
and from touchpoints by using a variety of protocols. The following technology connectors can
generate additional disk access:

� Message queue connectors (if events or actions are persistent)
� RDBMS connector (due to database activity)
� File system connector (due to file system activity)

3.3 Performance impact of durability

Decision Server Events supports non-durable and durable processing. The two types of
processing are described as follows:

� Non-durable processing means events are sent to the Decision Server Events
eventDestination with a JMS delivery mode of non-persistent. Non-durable events and
actions are stored in memory unless the allocated memory buffers become full.
Non-durable events are not recovered if Decision Server Events or the messaging
provider restarts.

� Durable processing means events are sent to the Decision Server Events
durableEventDestination with a JMS delivery mode of persistent. Durable events and
actions are persisted to disk and will be recovered if Decision Server Events or the
underlying messaging provider restarts.

If you send events to the durableEventDestination with a JMS delivery mode of
non-persistent, events could still be lost if the server restarts.

It is up to the system administrator to balance system resources and recovery needs.

You should also ensure that actions are marked with the appropriate subscription type on the
Connector tab of the action in Event Designer. This setting controls whether actions are sent
with a JMS delivery mode of persistent to the durableActionTopic (Reliable), or JMS delivery
mode of non-persistent to the actionTopic (Express).

For information about configuring durable and non-durable events and actions, refer to the
following website:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.events.
dev/topics/tsk_config_dur_nondur_events_actions.html

Carefully consider the durability requirements for your event processing because this has a
large impact on Decision Server Events performance.

As an example, we ran a test scenario using complex event rules, javascript, synthetic
events, and database enrichment, with one action being generated for every 100 events. In
our tests, we obtained results showing that:

� Non-durable processing was 2.4 times faster than durable processing when using
WebSphere Application Server default messaging as the JMS provider.

Preferred practice: Minimizing all types of disk access

� Use non-persistent, non-durable event processing where practical.
� Use logging only when required.
� Disable history unless required.
� Use CSBO, time-delays, and Context IDs only when necessary.
Chapter 3. Decision Server Events: Designing for performance 15

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.events.dev/topics/tsk_config_dur_nondur_events_actions.html

� Non-durable processing was 2.5 times faster than durable processing when using remote
WebSphere MQ as the JMS provider.

3.4 Relative performance of simple and complex event rules

Event rules define the logic that will be evaluated in response to events. This section shows
how adding a context ID to event rules can affect performance.

3.4.1 Simple event rules

Using simple event rules wherever possible significantly improves performance. By definition,
a simple event rule can be evaluated without reference to previous events, for example, is
the value of this order greater than £200. This is the simplest form of event rule
processing and produces the highest throughput.

3.4.2 Simple event rules with a context ID

If a context ID is added to a simple event rule, as shown in Figure 3-3, this indicates to
Decision Server Events that information about the occurrence of the event will be used in the
evaluation of future complex event rules. As a result, information about the occurrence of the
event is stored in the Decision Server Events repository database, which adds path length
and increases database activity. This results in lower throughput than a simple event rule
without a context ID.

Figure 3-3 Specifying a Context ID

Preferred practice: Durability

Carefully consider your durability requirements and use non-durable processing where
possible.

V8.0.1 update: From V8.0.1 onwards, the addition of a context ID to a simple rule will not
automatically result in information about the occurrence of an event being written to the
Decision Server Events repository. Information will be written only if it is referenced by a
complex event rule.
16 IBM Operational Decision Management V8.0 Performance Tuning Guide

3.4.3 Complex event rules

By definition, complex event rules have a dependency on previous events and will therefore
always have a context ID defined. The context ID (for example, a customer reference
number) is used to determine which events have a relationship. The following lines are
examples of a complex event rule for a particular customer or context ID:

if event A has occurred twice before
if event A occurred before event B

When complex event rules are processed, information about the current event must be stored
in the Decision Server Events repository database, and information about previous events
with the same context ID must be retrieved from the database. The increased processing and
database access reduces performance as compared to simple event rules.

The difference in path length and database activity makes a significant difference in
throughput. In our test scenario using non-durable, non-persistent processing on a single
server, we obtained results showing that:

� The throughput using simple event rules without a context ID can be up to a factor of 2
higher than the throughput for complex event rules.

� The throughput using simple event rules without a context ID can be 20% higher than the
throughput for simple event rules with a context ID.

For the same test scenario using durable, persistent processing, we obtained results
showing:

� The throughput using simple event rules without a context ID can be 20% higher than the
throughput for complex event rules.

� The throughput using simple event rules without a context ID can be 10% higher than the
throughput for simple event rules with a context ID.

Simple event rules without a context ID also have significantly better performance in a
Decision Server Events cluster. Consider this option a useful way of filtering out some events
before performing complex event processing.

3.5 Event rule ordering

The order in which event rules are defined can also have a significant effect on performance.
Consider the following filters:

� Simple filter (actionable event): Checks the value of an event field.

V8.0.1 update: From V8.0.1 onwards using a single server, the addition of a context ID to
a simple event rule will not have a significant performance impact if the information about
the associated events and actions is not referenced in a complex event rule.

In a cluster configuration, the addition of a context ID to a simple event rule will still have a
significant overhead because events might need to be serialized between cluster
members.

Preferred practice: Use of context IDs

Define a context ID for event rules only when required.
Chapter 3. Decision Server Events: Designing for performance 17

� Complex filter (all occurrence of this event is more than 1): Requires information about
previous events to be retrieved from the Decision Server Events repository database. This
requires more resources to evaluate than the simple filter.

These filters are shown in Figure 3-4 and Figure 3-5. In Figure 3-4, the complex filter is
evaluated first, followed by the simple filter.

Figure 3-4 Filter A: Complex filter first

In Figure 3-5, the order of the filters is reversed, so the simple filter is evaluated first.

Figure 3-5 Filter B: Simple filter first

Functionally, these two event rules will behave identically. However, their performance can
be quite different. Decision Server Events event rules are always evaluated from top to
bottom. Because this is an and operation, if the first filter evaluates to false, there is no need
to execute the second filter. Putting the simple filter first increases processing speed because
the complex filter is only evaluated when the simple filter is returned as true.

As an example, we ran a test scenario with these event rules in which the actionable event
returned true for one in every 100 events. The more expensive complex filter was therefore
only evaluated one in every 100 events. In our tests, we obtained results showing:

� For non-durable processing, placing the simple filter first produced a 50% performance
gain.

� For durable processing, placing the simple filter first produced a 20% performance gain.

If the actionable event returned true for a greater proportion of events, then this improvement
would be reduced. If it returned true for every event, then the performance for both event
rules would be the same.

This principle can be applied to other types of filters, for example, to those using a field
populated by database enrichment or JavaScript. The database lookup or JavaScript is only
executed when the intermediate object field is referenced, so the most simplistic and fastest
filters should be placed first in event rules.

Preferred practice: Rule ordering

Analyze your event flows and order your rule sets so simple filters, especially if they often
evaluate to false, are executed ahead of more complex ones.
18 IBM Operational Decision Management V8.0 Performance Tuning Guide

3.6 Context scoped business objects

Information can be shared across events in a context using context scoped business objects
(CSBOs). The following list shows the two types of CSBOs:

� A summary instance CSBO. In this case, one CSBO is stored for each context. For
example, a bank might want to keep a running average of cash withdrawals for each
customer.

CSBO summary instances can be set using the context scoped settings on the business
object, as shown in Figure 3-6.

Figure 3-6 Configuring a context scoped business object summary instance

� A CSBO array. In this case, an array of CSBOs are stored for each context. The number of
array entries can be limited by number or by time. For example, a bank might want to
Chapter 3. Decision Server Events: Designing for performance 19

record the last five cash withdrawals that each customer has made or record each
customer’s withdrawals in the last 24 hours.

CSBO arrays can be set using the context scoped settings on the business object, as
shown in Figure 3-7.

Figure 3-7 Configuring a context scoped business object array

3.6.1 Memory usage

CSBOs can either be held in a database, with a small in-memory cache to hold the most
recently used values, or stored completely in memory.

Whether a CSBO is stored in memory or in a database is controlled using the Keep the
values in this object persistent across system shutdowns check box on the business
object page in Event Designer. This is shown on the bottom line of Figure 3-7.
20 IBM Operational Decision Management V8.0 Performance Tuning Guide

Persistent CSBO
If CSBOs are stored in a database, then the memory requirements are small because the
Java heap only contains a small in-memory cache of the most recently used CSBOs. This is
the preferred practice.

Non-persistent CSBO
If the CSBOs are held in memory, then 1.5 KB of heap is required for each CSBO, with a
further 1.2 KB for each additional array element. The following list gives examples of
estimated size requirements:

� If a summary instance CSBO is used to store the average cash withdrawal for 700,000
bank customers, the required Java heap size for the CSBOs would be 1 GB (700,000 x
1.5 KB).

� If a CSBO array was used to store the last five cash withdrawals for 700,000 bank
customers, the required Java heap size for the CSBOs would be 4.4 GB (700,000 x
1.5 KB + 700,000 x 4 x 1.2 KB).

Note that non-persistent summary instance CSBO data is never freed from memory unless a
server restarts. For CSBO arrays, there will always be a core 1.5 KB for each context, which
is never freed from memory unless a server restarts. However, the number of array elements
for a particular context can be limited by time or number. For best performance, consider
using generational garbage collection with a large enough tenured heap to contain all the
CSBO data.

3.6.2 CSBO performance

As an example of the relative performance of non-persistent and persistent CSBOs, and also
to show the relative performance of array and summary instance CSBOs, we ran some test
scenarios.

For non-durable event processing our test results showed:

� A complex event rule without a CSBO produces a 42% higher throughput than a complex
event rule using a persistent summary CSBO.

� For summary instance CSBOs, non-persistent CSBOs (that is, held only in memory)
produce a 30% higher throughput than CSBOs persisted to a database.

� For array CSBOs, non-persistent CSBOs (held only in memory) produce a 60% higher
throughput than CSBOs persisted to a database.

� For non-persistent CSBOs, summary instance and small arrays have similar performance.

� For persistent CSBOs, a summary instance produces 25% higher throughput compared to
small arrays.

For durable event processing our test results showed:

� A complex event rule without a CSBO produces a 20% higher throughput than a complex
event rule using a persistent summary CSBO.

� For summary instance CSBOs, non-persistent CSBOs (held only in memory) produce a
15% higher throughput than CSBOs persisted to a database.

V8.0.1 update: From V8.0.1 onwards, CSBO data can be freed using context
management. For further information see the Context Definitions topic in the V8.0.1 IBM
Operational Decision Manager Information center.
Chapter 3. Decision Server Events: Designing for performance 21

� For array CSBOs, non-persistent CSBOs (held only in memory) produce a 22% higher
throughput than CSBOs persisted to a database.

� For non-persistent CSBOs, summary instance and small arrays have similar performance.

� For persistent CSBOs, a summary instance produces 6% higher throughput than small
arrays.

Further information about CSBOs can be found in the Operational Decision Management
Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.events.
dev/topics/sharingdataacrossevents.html

3.7 Multiple event rules and synthetic events

This section describes a number of examples and shows how the choice and complexity of
filtering impacts performance. In each case one action is generated for every 100 input
events.

3.7.1 Event rule descriptions

The following list describes the event rules and filters used in this comparison:

� One simple event rule

This event rule simply checks a value in the input event message to determine whether to
send an action. It does not have a context ID. This is the baseline example for comparison
with the other examples. Events and actions are both less than 1 KB. The event rule and
filter are shown in Figure 3-8 and Figure 3-9.

Figure 3-8 One simple event rule

Note: The relative throughputs cited show only the relative impact on throughput for the
Decision Server Events server. It should be noted that the use of persistent CSBOs also
significantly increases the load on the Decision Server Events repository database.

Preferred practice: Context scoped business objects

� Unless the number of persistent context scoped business objects is small or the Java
heap is very large, the preferred practice is to use persistent CSBO.

� When using non-persistent CSBOs, consider using generational garbage collection
with a large enough tenured heap to contain all the CSBO data.
22 IBM Operational Decision Management V8.0 Performance Tuning Guide

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.events.dev/topics/accumulatingdataacrossevents.html

Figure 3-9 The actionable event filter

� 30 simple event rules

This example is the same as the one simple event rule case except that 30 filters are
used. If each of the 30 filters finds the expected value in the input event, then an action is
fired. It clarifies the overhead of evaluating a larger number of simple filters.

� Synthetic events

In this example every input event generates a synthetic event. Synthetic events are
internal events that can be defined in Event Designer. They can be fired in the same way
as actions, but allow you to define additional event rules to process them. The synthetic
event is then processed by the one simple event rule example. This scenario clarifies the
performance impact of generating and processing synthetic events.

For more information about using synthetic events, see the following website:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=/com.ibm.wodm.d
server.events.dev/topics/syntheticevents.html

In our test scenarios, we obtained results that showed the performance of the different filters
relative to processing one simple event rule.

For non-durable event processing:

� Evaluating 30 simple event rules compared to one causes less than a 7% reduction in
throughput.

� If every event generates a synthetic event, there is an approximately 40% reduction in
performance. This occurs because twice as many events are then being processed: the
original event and a new synthetic event. If only a small proportion of the initial events
generates a synthetic event, the impact will be significantly less.

For durable event processing:

� Evaluating 30 simple event rules compared to one causes less than a 1% reduction in
throughput.

� If every event generates a synthetic event, there is an approximately 30% reduction in
performance. This occurs because twice as many events are then being processed: the
original event and a new synthetic event. If only a small proportion of the initial events
generates a synthetic event, the impact will be significantly less.

3.8 Impact of the technology connectors on performance

Decision Server Events can receive events and send actions directly using JMS or indirectly
using technology connectors. The use of technology connectors is shown in Figure 3-10.
Chapter 3. Decision Server Events: Designing for performance 23

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=/com.ibm.wodm.dserver.events.dev/topics/syntheticevents.html

Figure 3-10 The technology connectors

Technology connectors allow Decision Server Events to receive events and send actions to a
variety of sources. These sources include databases, FTP, JMS, HTTP, files, and more. They
also allow events and actions to be transformed to and from the native Decision Server Event
XML format.

The technology connectors provide useful functionality, but also add to the processing
overhead. In our test scenario using complex event processing, we obtained results that
showed:

For non-durable, non-persistent processing:

� Using a JMS or file event connector has an approximately 30% impact on performance
compared to using no connector. Adding an XSLT transformation to the connector
introduces an additional 10% overhead.

� Using an HTTP file event connector has a 25% impact on performance compared to using
no connector.

For durable, persistent processing:

� Adding a JMS event connector has a 20% impact on performance compared to using no
connector. Adding an XSLT transformation to the connector introduces an additional 10%
overhead.

� Using the file connector has no noticeable impact on throughput compared to using no
connector.

When using the technology connectors, see 4.10, “Technology connectors tuning” on page 50
for information about runtime tuning.

Decision Server Events

Event connector Action connectorExternal
systems

External
systemsRuntime

Preferred practice: Technology connectors

Optimal performance is obtained when sending and receiving events and actions directly
to and from the Decision Server Events event and action destinations. Use the technology
connectors only when required.
24 IBM Operational Decision Management V8.0 Performance Tuning Guide

Chapter 4. Decision Server Events: Run
time performance tuning

This chapter discusses the tuning of the Decision Server Events run time. It covers
considerations that affect your choices at a high level and continues through the tuning
aspects of threads, databases, messaging providers, and technology connectors. Monitoring,
testing, and diagnosing performance issues round out the topics that are covered on tuning.

The following topics are covered in this chapter:

� High-level considerations for run time tuning
� Tuning the number of event rule processing threads
� The impact of history on performance
� The impact of logging and tracing
� Relative performance of the JMS providers
� Tuning JMS messaging provider: WebSphere Application Server default messaging
� Tuning the JMS messaging provider: WebSphere MQ JMS messaging
� Database tuning
� High availability and high performance
� Technology connectors tuning
� Monitoring performance
� Advice on benchmarking applications
� Diagnosing performance problems

4

© Copyright IBM Corp. 2013. All rights reserved. 25

4.1 High-level considerations for run time tuning

This section provides a high-level overview of the factors that affect the run time performance
of Decision Server Events. Each of the concepts in the following list is covered with greater
detail later in this chapter (or, as noted, elsewhere in the document):

� Ensure that Decision Server Events and the Decision Server Events repository database
have sufficient hardware and are not limited by memory, disk, or network resources. See
2.1, “Hardware and monitoring” on page 6.

� Ensure that the JVM is tuned. Consider using generational garbage collection and ensure
that the size of the heap is sufficient for the workload. See 2.2, “Tuning the Java virtual
machine (JVM)” on page 6.

� Ensure that there are sufficient event rule processing threads. See 4.2, “Tuning the
number of event rule processing threads” on page 26.

� Ensure that history is disabled if it is not required. Note that installing the Business Events
Tester will automatically enable history. For more information, see 4.3, “The impact of
history on performance” on page 28.

� Ensure that tracing and logging are disabled. For more information, see 4.4, “The impact
of logging and tracing” on page 31

� Ensure that the appropriate tuning has been applied for your JMS provider. See 4.6,
“Tuning JMS messaging provider: WebSphere Application Server default messaging” on
page 35 and 4.7, “Tuning the JMS messaging provider: WebSphere MQ JMS messaging”
on page 37.

� Ensure that your Decision Server Events repository database is correctly tuned and that
the context table is being pruned. See 4.8, “Database tuning” on page 42.

� If you are using WebSphere Application Server default messaging as the JMS provider,
and high availability is required, consider using the Scalability with High Availability
Topology. See 4.9, “High availability and high performance” on page 43.

4.2 Tuning the number of event rule processing threads

Most event rule processing in the event run time occurs on rule processor threads. The
number of these threads is controlled by the following event property:

as.director.server.ruleProcessorInstances

The following sequence shows where this is configured in the WebSphere Application Server
administrative console:

Resources Resource environment Resource environment entries WbeSrv01
Custom properties

The default value is 31.

If messages build up on the event destination as the rate of event production increases, then
increasing the number of rule processing instances might improve the rate of event
processing (by adding greater concurrency). Ensure that the machine has spare CPU
capacity to handle the increase in rule processing. Methods of monitoring the event
destination are covered in 4.11, “Monitoring performance” on page 54.
26 IBM Operational Decision Management V8.0 Performance Tuning Guide

When it is running in a cluster, Decision Server Events uses WebSphere eXtreme Scale to
route events with a context ID to a particular server in the cluster. To be precise, it routes the
events to a specific WebSphere eXtreme Scale partition on a specific server in the cluster.
This means that an event with a particular context ID will always be handled by the same rule
processing thread and allows data to be cached locally for the context. It also ensures that
events with the same context are processed serially, thus preventing any inconsistent,
concurrent modification of common data. The distribution of context IDs across the cluster is
handled automatically by WebSphere eXtreme Scale.

The optimal number of rule processing threads will be influenced by the number of
WebSphere eXtreme Scale partitions used in a cluster (24 by default). You should ensure
that the number of rule processing instances is not exactly divisible by either the total number
of WebSphere eXtreme Scale partitions, or the number of WebSphere eXtreme Scale
partitions on each cluster member. The number of partitions can be confirmed by checking
the value of numberOfPartitions in the following file:

<WODM_HOME>\WAS\AppServer\profiles\WODMSrv01\config\cells\wodmCell\applications\wb
eruntimeear.ear\deployments\wberuntimeear\wberuntime.jar\META-INF\
objectGridDeployment.xml

These partitions are spread across the cluster members. With the default total of 24
partitions, if you have two cluster members, there are 12 partitions on each cluster member.
With five cluster members, there are five partitions on four servers, and four partitions on the
other server.

Failure to ensure that the number of rule processing threads is not exactly divisible by the
number of WebSphere eXtreme Scale partitions will not cause any errors. However, it might
mean that all ruleProcessor threads are not active on all servers, so you might not get the
concurrency expected. Therefore, prime numbers make a good choice for the number of
ruleProcessorInstances.

When you increase the value of this setting, you should also ensure that there are sufficient
resources for these threads to use. The following list notes other settings that should be
increased in line with this change:

� Events datasource connection pool

Each rule processor thread could use a database connection from the Event runtime
datasource connection pool. The maximum connections setting for this connection pool
should be set using the following formula as the minimum:

history MDB concurrency + value of as.director.server.ruleProcessorInstances + 10

This is set in the WebSphere Application Server administrative console using the following
menu selections:

Resources JDBC Data sources Event Runtime Datasource Connection
pools

To determine the value for history MDB concurrency, see 4.3.3, “Tuning history
processing” on page 30.

� Events topic onnection factory connection pool

Each rule processor thread could use a JMS connection from the
WbeTopicConnectionFactory connection pool. The maximum connections setting for this
connection pool should be greater than or equal to the following value:

value of as.director.server.ruleProcessorInstances + 10
Chapter 4. Decision Server Events: Run time performance tuning 27

This is set in the WebSphere Application Server administrative console using the following
menu selections:

Resources JMS Topic connection factories WbeTopicConnectionFactory
Connection pools

� Data connection connection pool limit

If you are using a data connection to enrich business objects, you should also increase the
connection pool limit. This limit must be set to a value that is greater than or equal to the
value of as.director.server.ruleProcessorInstances. The methodology for setting the
limit depends upon the configuration:

– If you specify a data source JNDI name in Event Designer on the data connection
page, as shown in the first highlight in Figure 4-1, then the connection pool limit is
controlled using the connection pool for this data source. This is set in the WebSphere
Application Server administrative console using the following menu selections:

Resources JDBC Data sources Event Runtime Datasource
Connection pools

– If you do not specify a data source JNDI name in Event Designer, then the connection
pool limit is controlled by the value that is set in Event designer on the data connection
page. See the second highlight in Figure 4-1.

Figure 4-1 Setting the data connection pool limit

4.3 The impact of history on performance

History is required if you need to run reports or monitor events, actions, filters, or data in real
time. When history is enabled, a significant amount of information about events, actions, and
filters is written to the Decision Server Events repository.

The history data can be viewed using the reports section of the Decision Server Events
administration interface and the Business Space dashboards. You can produce reports that
show what events enter Decision Server Events, the actions that are triggered by those
events, and the event rules and filters that are evaluated in response to those events. In order
28 IBM Operational Decision Management V8.0 Performance Tuning Guide

to generate these reports, you need to enable history. History is disabled by default unless
Business Events Tester is installed. For performance reasons, the installation of Business
Event Tester it is not a preferred practice on a production system. History is tracked in history
database tables that record events, actions, filters, and other assets that are processed by
the Decision Server Events run time.

4.3.1 Recording history

For instructions on enabling and disabling history, see the following web page in the
Operational Decision Management V8.0 Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.events.
config/topics/tsk_configuring_history_runtime.html

The business object fields that are recorded in history are set using Event Designer, as
shown in Figure 4-2.

Figure 4-2 Setting whether to record a business object field in history

4.3.2 Performance impact of history

As an example, we ran a test scenario using non-durable event processing with no history
enabled, and then with history enabled with one business object recorded, and also with five
business objects recorded. In our tests, we obtained results showing that:

� The throughput with history enabled and recording one business object field can be 31%
of the throughput when history is not enabled.

� The throughput with history enabled and recording five business object fields can be 26%
of the throughput when history is not enabled.

Even with just one field selected to record in history, Decision Server Events still records data
about all events, filters, rules, and actions. This explains the relatively large performance
impact. As can be seen from the data, the number of business object fields that are recorded
in history has a relatively small impact on performance.

We ran the same scenario using durable event processing. In our tests, we obtained results
showing that:

� The throughput with history enabled and recording one business object field can be 52%
of the throughput when history is not enabled.

Note: These settings will take effect only if history is enabled.
Chapter 4. Decision Server Events: Run time performance tuning 29

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.events.config/topics/tsk_configuring_history_runtime.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.events.config/topics/tsk_configuring_history_runtime.html

4.3.3 Tuning history processing

If history is enabled and messages are building up on the history topic or queue, you should
consider increasing the maximum concurrency on the history activation specification. This will
increase the concurrency of Message Driven beans (MDBs) that are writing the history data
to the database.

This setting can be altered in the WebSphere Application Server administrative console using
the following menu selections:

Resources JMS Activation specifications wbe_history

Consider the following information when modifying values using the previous menu
selections:

� If you are using WebSphere Application Server default messaging as the messaging
provider, select and modify the value of Maximum concurrent MDB invocations per
endpoint.

� If you are using WebSphere MQ as the messaging provider, select and modify the value
of Maximum server sessions in the Advanced properties page.

A value of 30 was suitable for the tests run in 4.3.2, “Performance impact of history”. As a part
of this change, if you are using WebSphere MQ as the JMS provider, you should also
consider modifying the thread pool setting for the WebSphere MQ messaging provider. The
modification is needed to account for the extra MDB threads. See 4.7.2, “Tuning the
WebSphere Application Server for WebSphere MQ JMS” on page 40 for further details.

Each MDB thread can use a database connection from the Event runtime datasource
connection pool. The Maximum connections setting for this connection pool is configured in
the WebSphere Application Server administrative console using the following menu
selections:

Resources JDBC Data sources Event Runtime Datasource Connection
pools

The maximum connections setting should be set to the following minimum standard:

history MDB concurrency + value of as.director.server.ruleProcessorInstances + 10

The as.director.server.ruleProcessorInstances setting is set in the WebSphere
Application Server administrative console using the following menu selections:

Resources Resource environment Resource environment entries WbeSrv01
Custom properties

V8.0.1 update: From V8.0.1 onwards, the impact of using history is significantly improved.
In our tests, we obtained results showing that non-durable event processing with history
enabled can be a factor of two faster than V8.0.

In V8.0.1, history can also be individually selected on each asset (events, actions, and so
on). Selecting a subset of assets can significantly reduce the amount of data recorded and
therefore provide further performance gains.
30 IBM Operational Decision Management V8.0 Performance Tuning Guide

4.4 The impact of logging and tracing

Logging and tracing have a significant impact on performance and should be minimized
wherever possible.

4.4.1 Configuring trace and log files

The output files of the trace and log parameters give critical information. It is important to
examine these files to ensure that the system is operating correctly and that performance is
not being degraded by unnecessary or unexpected log writes. The following list notes how to
set the trace and log parameters and where to find the associated output files:

� Application Server diagnostic tracing

Set the Application Server diagnostic tracing by making the following menu selections:

Troubleshooting Logging and Tracing Server1 Diagnostic Trace service
Change log detail levels

Then, set the trace level, as shown in Figure 4-3. The default value of *=info is an
appropriate choice for production use.

Figure 4-3 Setting the trace level

Setting the trace level enables logging for individual areas of Decision Server Events or
WebSphere Application Server. The type and amount of tracing depends on the tracing
that is enabled. The following directory is the default log file location:

<was_install_dir>\profiles\WODMSrv01\logs\trace.log

Preferred practices: history usage

� Carefully consider whether you need to enable history if high performance is required.
� If history is required, consider tuning the MDB concurrency setting.
Chapter 4. Decision Server Events: Run time performance tuning 31

� Application Server system, error, and ffdc files

Decision Server Events writes informational and error data to system files. If these files
are growing significantly during run time, this will affect performance and can indicate an
underlying problem. Check the contents of these files to ensure that there are no
configuration problems. The following list shows the default log file locations:

<was_install_dir>\profiles\WODMSrv01\logs\SystemOut.log
<was_install_dir>\profiles\WODMSrv01\logs\SystemErr.log
<was_install_dir>\profiles\WODMSrv01\ffdc\ (all files)

� Connector logging when the event connector process is started

Connector logging is configured in the following location:

<DecisionServer_install_dir>\config\wbe\connectorsTrace.properties

Setting a value of com.ibm.wbe.*=debug results in every event and action packet that is
processed by the connectors being written to the connectors log file. The writing of this
information has a significant impact on performance. The default setting is
com.ibm.wbe.*=info, which is generally acceptable for production use. However, some
connectors output trace entries. These entries note that they have processed an event or
action. This can be useful while debugging or setting up a system, but can have a
significant effect on performance. You can check whether the system is receiving a large
amount of output from the connectors by looking at the log file. If it contains a large
amount of informational trace data that you do not need, change the trace specification to
com.ibm.wbe.*=error. This setting traces error messages, but does not trace informational
messages.

The default log file location is:

<DecisionServer_install_dir>\connectors\logs\connectors.log

4.4.2 Performance impact of tracing

As an example, we ran a test scenario running without trace enabled (trace string: *=info)
compared to the same scenario with events user trace enabled (trace string: *=info:
com.ibm.wbe.usertrace.*=finest). In our tests, we obtained results showing that for
non-durable event processing:

� Using the default WebSphere Application Server trace, the throughput was just 10% of the
throughput without trace.

� Using high performance extensible logging (HPEL) trace, the throughput was 20% of the
throughput with no trace.

HPEL trace is a new feature of WebSphere Application Server V8 that offers improved trace
performance. For more information about HPEL, see the WebSphere Application Server
information center at the following website:

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.
nd.doc/info/ae/ae/ctrb_HPELOverview.html

For durable event processing, our results showed:

Note: This applies to only the older connectors, which require a separate connector
process to be started. It does not apply to the newer HTTP, SOAP, JMS, JDBC, and file
connectors, which use the Application Server diagnostic tracing.
32 IBM Operational Decision Management V8.0 Performance Tuning Guide

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/ctrb_HPELOverview.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/ctrb_HPELOverview.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/ctrb_HPELOverview.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/ctrb_HPELOverview.html

� Using the default WebSphere Application Server trace, the throughput was just 30% of the
throughput without trace.

� Using high performance extensible logging (HPEL) trace, the throughput was 40% of the
throughput with no trace.

If you need to enable tracing to aid in debugging your events project, you should consider
increasing both the maximum file size and the maximum number of historical files to ensure
that sufficient trace entries are maintained in the trace.log file. The default setting might
keep only a few seconds worth of tracing (depending on the project and workload).

These settings can be altered in the WebSphere Application Server administrative console
using the following menu selections:

Troubleshooting Logs and Trace server1 Diagnostic trace service

4.5 Relative performance of the JMS providers

Decision Server Events can be configured to use WebSphere Application Server default
messaging or WebSphere MQ as the JMS provider. This section discusses the relative
performance of these two options.

4.5.1 WebSphere Application Server default messaging vs WebSphere MQ

Although the event run time can use technology connectors to communicate with many
sources, all events and actions are ultimately placed on a JMS topic or queue. The only
exception to this rule is the case where events are delivered using an external WebSphere
eXtreme Scale client. The internal use of WebSphere eXtreme Scale for event distribution is
discussed in 4.2, “Tuning the number of event rule processing threads” on page 26. A
discussion of external WebSphere eXtreme Scale clients for event delivery, filtering, and
caching is outside the scope of this document.

The choice of JMS provider depends on a number of factors. For example, if a company
already has a significant investment in a WebSphere MQ infrastructure and skills, then they
might prefer to use WebSphere MQ. However, WebSphere Application Server default
messaging is an integrated part of Operational Decision Management and does not require
any additional product licenses. Another consideration is performance, which is discussed in
this section.

As an example, we ran a test scenario to compare the relative performance of the two JMS
providers. In our tests, we obtained results showing that for non-durable event processing:

� Using an MQ queue manager co-located with Decision Server Events (using bindings
mode), the throughput was 70% of the throughput when using WebSphere Application
Server default messaging.

� Using a remote MQ queue manager (using client mode), the throughput was 80% of the
throughput when using WebSphere Application Server default messaging.

Preferred practice: Logging and tracing
Consider the following suggestions when making log and trace decisions:

� Minimize log and trace messages during normal execution.
� If trace is required, then consider increasing the size and number of files.
� For better performance, consider using HPEL trace.
Chapter 4. Decision Server Events: Run time performance tuning 33

For durable event processing, our results showed:

� Using an MQ queue manager co-located with Decision Server Events (using bindings
mode), the throughput was 90% of the throughput when using WebSphere Application
Server default messaging.

� Using an MQ remote queue manager (using client mode), the throughput was 80% of the
throughput when using WebSphere Application Server default messaging.

4.5.2 Retrieving events from WebSphere MQ

If an existing WebSphere MQ infrastructure is in place to send events and actions via
WebSphere MQ, several options are available to connect to Decision Server Events. Some
common configurations are as follows:

� Use WebSphere MQ as the Decision Server Events JMS messaging provider.

– Co-locate Decision Server Events and WebSphere MQ on the same server and
connect using bindings mode.

– Configure Decision Server Events and WebSphere MQ on separate servers and
connect using client mode.

� Use WebSphere default messaging as the Decision Server Events JMS messaging
provider.

– Configure Decision Server Events and WebSphere MQ on separate servers and use a
connector to retrieve events from WebSphere MQ using client mode.

As an example, we ran a test scenario to compare the relative performance of these options.

For non-durable event processing, our results showed:

� Using a remote WebSphere MQ queue manager (using client mode) yielded 20% higher
throughput compared to using a local WebSphere MQ queue manager (using bindings
mode). This is because the remote queue manager is running on its own hardware and,
unlike the local case, is not using processing cycles on the Decision Server system.

� Using WebSphere default messaging as the Decision Server Events JMS messaging
provider, with a connector to a remote WebSphere MQ queue manager, the throughput
was 60% of the throughput using a local WebSphere MQ queue manager (using bindings
mode).

For durable event processing, our results showed:

� Using a remote WebSphere MQ queue manager (using client mode), the throughput was
90% of the throughput achieved using a local WebSphere MQ queue manager (using
bindings mode).

� Using WebSphere default messaging as the Decision Server Events JMS messaging
provider, with a connector, the throughput was 70% of the throughput using a local
WebSphere MQ queue manager (using bindings mode).

In both cases, the local queue (using bindings) and the remote queue (using client mode
without connectors) offer significant performance advantages over the connector. Note that
the remote queue option has introduced additional hardware by running WebSphere MQ
remotely. This explains the 20% performance gain when using remote versus local queue
managers for non-durable processing.
34 IBM Operational Decision Management V8.0 Performance Tuning Guide

4.6 Tuning JMS messaging provider: WebSphere Application
Server default messaging

WebSphere Application Server default messaging offers two choices of message store.
Message store is where persistent and hardened, non-persistent messages are stored.
Non-persistent messages can be hardened (written to disk) to free memory when messages
start to build up on a destination. The message store types are:

� A file-system-based file store
� A database-backed implementation called data store

By default, Decision Server Events uses the file store to store persistent messages.
WebSphere Application Server also provides the ability to use data store implementation to
store persistent messages.

The benefits of each approach are discussed in the WebSphere Application Server
information center. Refer to the entry on Relative advantages of a file store and a data store
at the following website:

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info
/ae/ae/cjm0001_.html

In our tests, the performance of Decision Server Events, using either file store or data store
with a remote IBM DB2® database, was similar for both persistent and non-persistent
messaging.

4.6.1 Concurrent processing: WebSphere Application Server default
messaging

For non-durable processing, events on the event destination are processed by an MDB using
the wbe_events activation specification. By default, this activation specification has the
maximum concurrent MDB invocations per endpoint set to 10, which means that a maximum
of 10 events can be processed concurrently. If events build up on the event destination,
consider increasing the maximum concurrent MDB invocations per end point for the
wbe_events activation specification.

For durable event processing, if events are building up on the durable event destination,
consider increasing the maximum concurrent MDB invocations per end point for the
wbe_events_durable activation specification.

These parameters can be set using the WebSphere Application Server administrative
console, as shown in Figure 4-4 on page 36. Use the following menu selections to access that
configuration point:

Servers Resources JMS Activation specifications wbe_events (or wbe_
wbe_events_durable)
Chapter 4. Decision Server Events: Run time performance tuning 35

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/cjm0001_.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/cjm0001_.html

Figure 4-4 Setting MDB concurrency

4.6.2 Miscellaneous WebSphere Application Server default messaging tuning

When using non-persistent messaging, adjusting the WebSphere Application Server default
messaging setting can improve throughput. The following setting is particularly useful when
there is a buildup of messages on the JMS topics or queues:

sib.msgstore.omTemporaryStoreCacheSize=60000

For persistent messaging, the following setting can improve throughput, particularly when
there is a buildup of messages on the JMS topics or queues:

sib.msgstore.omPermanentStoreCacheSize=60000

To configure these settings, make the following menu selections:

Service integration Buses WbeBus [Topology] Messaging engines
engine_name [Additional Properties] Custom properties

For more information about these settings, refer to Controlling the memory buffers used by a
messaging engine in the WebSphere Application Server V8.0 information center:

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info
/ae/ae/tjm0220_.html

If you see disk contention when using WebSphere Application Server default persistent
messaging, you might want to move the message store to a faster disk location. To move
36 IBM Operational Decision Management V8.0 Performance Tuning Guide

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/tjm0220_.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/tjm0220_.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/tjm0220_.html

locations, follow the instructions in Modifying file store configuration in the WebSphere
Application Server V8.0 information center at the following address:

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.
nd.doc/info/ae/ae/tjm1030_.html

Note that you will need to recreate the WbeTopicSpace destination after the file store location
has been moved.

4.7 Tuning the JMS messaging provider: WebSphere MQ JMS
messaging

This section is only intended as a general guide for WebSphere MQ tuning. Refer to the
WebSphere MQ information center and WebSphere MQ performance reports for more details
and specific tuning suggestions.

The WebSphere MQ information center for WebSphere MQ is found at the following website:

http://www-01.ibm.com/software/integration/wmq/library/index.html

The WebSphere MQ performance reports and tuning is found at the following website:

https://www-304.ibm.com/support/docview.wss?uid=swg27007150

4.7.1 Tuning the queue manager

This section discusses the tuning of the WebSphere MQ queue manager.

Log files
One of the key considerations, especially for persistent processing, is the configuration of the
queue manager log files. Incorrectly tuned log files will limit the speed at which messages can
be persisted to disk and will therefore limit the overall message throughput. The following list
identifies the important tuning parameters to consider:

� Log path: Place the data and log files on their own fast disk subsystems.

� Log type: Circular logging provides optimal performance.

� Log file pages: If there is sufficient disk space, allocate the maximum size.

� Number of primary and secondary log files: Log primary at value 16 and the secondary at
value 2 as a reasonable starting point.

� Log buffer pages: Use the largest value possible for optimal performance.

For further details about these settings, see the article on Configuring and tuning WebSphere
MQ performance on Windows and Linux at the following website:

http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/0712_du
nn.html

These settings are configured from WebSphere MQ Explorer by right-clicking the Queue
manager and selecting Properties, as shown in Figure 4-5 on page 38.
Chapter 4. Decision Server Events: Run time performance tuning 37

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tjm1030_.html
http://www-01.ibm.com/software/integration/wmq/library/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/0712_dunn.html
https://www-304.ibm.com/support/docview.wss?uid=swg27007150
https://www-304.ibm.com/support/docview.wss?uid=swg27007150
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tjm1030_.html

Figure 4-5 Configuring log file settings

General considerations
The following list presents general performance considerations for WebSphere MQ:

� The maximum queue depth for the Decision Server Events queues. Ensure that this is
large enough to support the largest expected runtime queue depth. This setting is
configured from WebSphere MQ Explorer by right-clicking Queue and selecting
Properties Extended.

This step is shown in Figure 4-6 on page 39.

� For the non-persistent, non-durable event and action destinations, consider using Read
ahead and Asynchronous put response type. Read ahead improves performance by
sending messages to a client in advance of an MQGET request. Asynchronous puts improve
performance by streaming messages without waiting for individual replies. Both of these
are relevant to client connections where a high quality of service is not required. This is
also shown in Figure 4-6.
38 IBM Operational Decision Management V8.0 Performance Tuning Guide

Figure 4-6 MQ queue properties

� If you are running in a stable environment, without user exits, consider making channels
trusted (set MQI bind type to fast). This improves performance by reducing path length.
MQI bind type is set from WebSphere MQ Explorer by right-clicking Queue manager and
selecting Properties Channels.

� Consider the optional channel setting of Channels\SHARECNV=1. This configuration ensures
that producers and consumers have their own sockets, which can be beneficial for
performance. This setting is configured from WebSphere MQ Explorer by selecting the
Channels folder, right-clicking the relevant channel and selecting Properties
Extended. Set the Sharing conversations value to 1.

� Ensure that the Max Channels and Max active channels settings for the queue manager
are greater than the sum of all the WebSphere Application Server session pools. This
prevents contention over channels and can therefore improve performance. Setting a high
value of 5000 should be sufficient. These settings can be configured from WebSphere MQ
Explorer by right-clicking the Queue manager and selecting Properties. Select
Channels and set the Max channels and Max active channels to 5000.

� Consider setting the DefaultPQBufferSize and DefaultQBufferSize in the qm.ini file.
The following syntax shows both tuning parameters:

DefaultPQBufferSize=16777216
DefaultQBufferSize=16777216

This DefaultQBufferSize setting will allow 16 MB of memory for non-persistent
messages. After the memory limit is exceeded, the MQ server will spill additional
non-persistent messages to disk and performance is degraded.
Chapter 4. Decision Server Events: Run time performance tuning 39

This DefaultPQBufferSize setting will allow 16 MB of persistent messages (per queue) to
be cached in memory. When the limit is exceeded, the MQ server will need to access the
disk to read the messages and performance is degraded.

4.7.2 Tuning the WebSphere Application Server for WebSphere MQ JMS

This section discusses the tuning of the WebSphere Application Server to optimize the
interaction with WebSphere MQ.

Bindings mode
If Decision Server Events and WebSphere MQ are located on the same machine, ensure that
the application server is using the bindings transport to connect to WebSphere MQ. This
allows WebSphere MQ to use the Java Native Interface (JNI) to call directly into the queue
manager API, rather than using communication through the network. This provides
significantly better performance. You can set the transport on the connection factory in the
WebSphere Application Server administrative console, as shown in Figure 4-7. To set the
transport, select Resources JMS TopicConnectionFactory
WbeTopicConnectionFactory and specify Bindings for Transport.

Figure 4-7 MQ transport setting configured for Bindings

Concurrent processing: WebSphere MQ
For non-durable processing, events on the event destination are processed by an MDB using
the wbe_events activation specification. By default, this activation specification has the
maximum server sessions set to 10. This value means that a maximum of 10 events can be
processed concurrently. If events build up on the event destination, consider increasing the
maximum server sessions for the wbe_events activation specification.

Similarly, for durable event processing, if events are building up on the durable event
destination, consider increasing the maximum server sessions for the wbe_events_durable
activation specification.

Note: These buffer sizes are a per queue setting, so each queue in the queue manager
will use 16 MB of memory. This value should be adjusted to fit the workload, the
number of queues, and the memory available.
40 IBM Operational Decision Management V8.0 Performance Tuning Guide

These parameters can be set using the WebSphere Application Server administrative
console, as shown Figure 4-8. The parameters can be accessed by selecting Servers
Resources JMS Activation specifications wbe_events (or wbe_
wbe_events_durable) Advanced properties.

Figure 4-8 Setting maximum server sessions

Note that each of the server sessions must obtain a thread from the WMQJCAResourceAdapter
thread pool in order to run. If the thread pool is not sized correctly, the server session will
block waiting for a thread, which will reduce concurrency and performance. Too few threads
might also cause work to be rejected and time out errors in the WebSphere Application
Server SystemOut.log.

To ensure that this pool is large enough, add up the maximum server sessions properties for
each WebSphere MQ activation specification on the application server. If Decision Server
Events has 11 activation specifications with 10 server sessions each, this would require a
minimum thread pool size of 110. Any increase in maximum server sessions should be
matched by an increase in the number of threads in the thread pool.

To change the setting from the administrative console, as shown in Figure 4-9, select
Servers Server types WebSphere Application Servers server1
Threadpools WMQJCAResourceAdapter.

Figure 4-9 Setting MQ JCA thread pool size
Chapter 4. Decision Server Events: Run time performance tuning 41

Queue and topic connection factories
Ensure that the maximum number of connections (default 10) correctly reflects the maximum
number of connections expected for each of the connection factories. These can be set by
selecting Resources JMS Topic connection factories
WbeTopicConnectionFactory Connection pools Maximum connections.

To obtain additional information about tuning the number of connections for the
WbeTopicConnectionFactory, see 4.2, “Tuning the number of event rule processing threads”
on page 26.

Additional tuning information
Additional tuning information about WebSphere Application Server activation specifications
and WebSphere MQ is located at the following website:

http://www.ibm.com/developerworks/websphere/library/techarticles/1110_titheridge/1
110_titheridge.html?ca=drs-

4.8 Database tuning

This section discusses the general principles of database tuning for Decision Server Events.

4.8.1 General tuning

The exact tuning of the database depends upon the type of database, the hardware, and the
nature of the workload. However, the following list gives some high-level preferred practices:

� Consider using fast disk subsystems (RAID/SAN) for the database. Ideally, place data and
logs on different disk subsystems.

� Monitor the disk, memory, network, and cpu utilization of the database to identify any
potential bottlenecks.

4.8.2 Database entry management

Event rules using a context ID need to access the Decision Server Events repository
database to record events in the context or steps table and, for complex events, also need to
retrieve information about past events. Although recently used steps data is cached in
memory, the cache has a limited size and, in many cases, the required information needs to

Preferred practices: WebSphere MQ tuning

The following list summarizes the important considerations in queue manager tuning:

� Tune the logging.
� Ensure that the queue depths are set appropriately.
� For non-durable processing, consider using asynchronous puts and read ahead.
� Tune the size of the Default[P]QBufferSize memory buffers.
� Use trusted channels where applicable.

The following list summarizes the important considerations in WebSphere Application
Server tuning for MQ:

� Use bindings mode if possible.
� Ensure that there are enough server sessions and WMQJCAResourceAdapter threads.
42 IBM Operational Decision Management V8.0 Performance Tuning Guide

http://www.ibm.com/developerworks/websphere/library/techarticles/1110_titheridge/1110_titheridge.html?ca=drs-
http://www.ibm.com/developerworks/websphere/library/techarticles/1110_titheridge/1110_titheridge.html?ca=drs-

be retrieved from the database. If the amount of data in the steps table becomes too large
(and large in this case might be many millions of entries), then the performance can be
adversely affected.

It is therefore a preferred practice to periodically prune the steps table to remove unwanted
entries. For more Information on pruning the steps table, refer to pertinent topic in the
Operational Decision Management information center at:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=/com.ibm.wodm.dser
ver.events.admin/topics/pruningthewbestepstable.html

4.9 High availability and high performance

Decision Server Events uses WebSphere Application Server clustering to provide high
availability and scalability. There are many different ways to configure WebSphere
Application Server clustering for messaging. This section covers some of the most common
configurations employed when using WebSphere Application Server default messaging or
WebSphere MQ as messaging provider.

4.9.1 High availability and performance when using WebSphere Application
Server default messaging

Two of the most important factors affecting cluster performance are messaging engine policy
and cluster topology. These factors are discussed in this section.

Messaging engine policy
The choice of messaging engine policy has a significant impact on cluster performance. The
following list describes the available choices:

� High availability: The high availability messaging engine policy configures a single
messaging engine for the cluster. The messaging engine will fail over to any of the other
application servers in the cluster.

� Scalability: The scalability policy configures a messaging engine for each server in the
cluster. This can provide better performance because the messaging load is spread
across all the servers in the cluster.

V8.0.1 Update: From V8.0.1 onwards, context data can be freed using context
management. For further information, see the Context Definitions topic in the V8.0.1
Operational Decision Manager information center.

Preferred practices: Decision Server Events database tuning
The following list summarizes the important factors to consider in Decision Server Events
database tuning:

� Use fast disks.

� Monitor the CPU, disk, network, and memory usage to identify bottlenecks.

� Ensure that the database is correctly tuned for the workload.

� Periodically prune the Decision Server Events repository steps table, either
automatically or manually.
Chapter 4. Decision Server Events: Run time performance tuning 43

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=/com.ibm.wodm.dserver.events.admin/topics/pruningthewbestepstable.html

� Scalability with high availability: The scalability with high availability messaging engine
policy configures a messaging engine for each server in the cluster. Each messaging
engine can also fail over to one other server in the cluster. This configuration provides for
high availability and scalability.

The scalability and scalability with high availability policies provide better performance than
the high availability policy. This is because with these policies there are multiple messaging
engines to support the messaging load. High availability topology uses a single messaging
engine.

More information about message engine policies can be found in the section on message
engine policy assistance in the WebSphere Application Server information center at the
following website:

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info
/ae/ae/cjt1005_.html

Cluster configuration topologies
There are two main cluster configuration topologies possible when using WebSphere
Application Server default messaging as the messaging provider. These cluster configuration
topologies are the silver topology and the gold topology.

Silver topology
The silver topology consists of a single cluster of WebSphere Application Server instances.
Each instance contains both a messaging engine (ME) and the Decision Server Events run
time. For more information about this topology refer to the following website:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=/com.ibm.wodm.dser
ver.events.config/topics/creatingandconfiguringasilvertopologycluster.html

The silver topology configuration is shown in Figure 4-10.

Figure 4-10 Overview of silver topology

Cell01

Node01 Node02

Node Agent

Event Runtime
Server1

Messaging Engine

Event Runtime
Server2

Messaging Engine

Deployment Manager

Node Agent

WbeBus

Computer1 Computer2

Event Runtime Cluster
44 IBM Operational Decision Management V8.0 Performance Tuning Guide

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=/com.ibm.wodm.dserver.events.config/topics/creatingandconfiguringasilvertopologycluster.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/cjt1005_.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/cjt1005_.html

Gold topology
The gold topology consists of two separate clusters of WebSphere Application Server
instances (one for the run time and one for the messaging). The messaging and events
runtime clusters can be on either the same or different hardware. For more information about
this topology, refer to the following website:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=/com.ibm.wodm.dser
ver.events.config/topics/creatingandconfiguringagoldentopologycluster.html

The configuration for gold topology is shown in Figure 4-11.

Figure 4-11 Overview of gold topology

Performance comparison of silver and gold topologies
We ran a test scenario to compare the relative performance of the silver and gold topologies.
Each topology was configured on a three-node cell, using the scalability with high availability
messaging engine policy. The gold topology had a messaging server and an events runtime
server on each node, whereas the silver topology had an events runtime server that
contained a messaging engine on each node. In our tests, we obtained results showing:

� For non-durable event processing, the gold topology achieved 20% lower throughput than
the silver topology.

� For durable event processing, the gold topology achieved 30% lower throughput than the
silver topology.

The relative throughput will vary depending on persistence, workload, and configuration. In
most cases, the silver topology will provide better throughput. It is more efficient for Decision
Server Events to receive a message from a local messaging engine, within the same
application server, than from a messaging engine in a different application server process.

Cell01

Node01 Node02 Node03

Node Agent

Event Runtime
Server1

Event Runtime
Server2

Event Runtime
Server3

Messaging

Server1

Messaging

Server2

Messaging

Server3

Deployment Manager

Node Agent Node Agent

WbeBus

Computer1 Computer2 Computer3

Event Runtime Cluster

Messaging Cluster
Chapter 4. Decision Server Events: Run time performance tuning 45

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=/com.ibm.wodm.dserver.events.config/topics/creatingandconfiguringagoldentopologycluster.html

4.9.2 High availability and performance when using WebSphere MQ as the
messaging provider

The default configuration, when using WebSphere MQ as a JMS provider in a cluster, is to
have a single WebSphere MQ queue manager and a cluster of Decision Server event runtime
servers. See Figure 4-12.

Figure 4-12 A Decision Server Events cluster using WebSphere MQ as JMS provider

This configuration requires a single queue manager in a WebSphere MQ instance. The single
queue manager can be made highly available using HA clusters or multi-instance queue
managers.

This configuration is suitable for most installations and scaling can be achieved by adding
more event runtime cluster members. However, in a high performance environment, it is
possible that the single queue manager might not be able to support the required throughput.
To resolve the throughput issue, some manual configuration is required to configure the
Decision Server Events runtime cluster to consume from multiple queue managers. An
example of this configuration, shown in Figure 4-13, requires one queue manager per
WebSphere MQ instance.

Cell01

Node01 Node02

Node Agent

Event Runtime
Server1

Event Runtime
Server2

Deployment Manager

Node Agent

Computer1 Computer2

Event Runtime Cluster

WebSphere MQ
46 IBM Operational Decision Management V8.0 Performance Tuning Guide

Figure 4-13 A Decision Server Events cluster using two WebSphere MQ queue managers

The key point about this configuration is that there are two event runtime servers on each
Decision Server Events runtime node. Each event runtime server is configured using
server-scoped activation specifications and queue connection factories. The servers are
configured to receive events from separate WebSphere MQ queue managers. This means
events will continue to be processed even if a piece of hardware in the configuration fails.

Configuration of this topology is accomplished using the following steps:

1. Define new activation specifications at each server scope that point to the required queue
manager for that server. In Figure 4-13, server1 and server3 point to WMQ1, and server2
and server4 point to WMQ2. These new activation specifications should be copies of the
existing wbe_events and wbe_events_durable activation specifications that are at cell
scope. They should have different names, such as wbe_events_server1 and
wbe_events_durable_server1, but the JNDI names must be set to jca/wbe_events and
jca/wbe_events_durable.

2. Define new queue connection factories at each server scope that point to the required
queue manager for that server. These new queue connection factories should be copies
of the existing WbeQueueConnectionFactory that is at cell scope. They should have
different names, such as WbeQueueConnectionFactory _server1, but the JNDI names
must be set to jms/WbeQueueConnectionFactory.

3. Synchronize the nodes and restart the servers. Decision Server Events run time is now
configured to receive events from two queue managers.

The topics, actionTopic and durableActionTopic, are still hosted on one queue manager for
simplicity. However, they can also be split across multiple queue managers. This is done
using a similar technique to define the topic connection factory (WbeTopicConnectionFactory)
and the following activation specifications at the server scope:

wbe_reset_watch, wbeca_http_as, wbeca_jms_as, wbeca_soap_as, wbeca_file_as,
wbeca_jdbc_as.

Cell01

Node01 Node02

Node Agent

Deployment Manager

Node Agent

Computer1 Computer2

Event Runtime Cluster

Event
Runtime
Server1

Event
Runtime
Server2

Event
Runtime
Server3

Event
Runtime
Server4

WebSphere
MQ1

WebSphere
MQ2
Chapter 4. Decision Server Events: Run time performance tuning 47

When creating these activation specifications, be sure to copy all the settings from the
original activation specification.

If you are using the history capability of Decision Server Events, you should also define the
wbe_history activation specification at the server scope.

4.9.3 Tuning for large clusters

The Decision Server Events run time uses WebSphere eXtreme Scale to route events with a
context ID to the correct server in the cluster. To perform this routing, WebSphere eXtreme
Scale uses partitions that are spread across the cluster. The default total number of partitions
is 24. This should be suitable for clusters with up to six event runtime servers. For clusters
with more than six event runtime servers, consider increasing the number of partitions to a
minimum of four partitions per server (10 servers should have a minimum of 40 partitions).
You should also allow for any future expansion of your events runtime cluster because
modifying the number of partitions requires a full cell outage.

The number of WebSphere eXtreme Scale partitions is defined in a file called
objectGridDeployment.xml. That file is located in the wberuntime.jar file, which is contained
within the wberuntimeear.ear.

To modify this setting, perform the following steps:

1. Locate the current version of the wberuntimeear.ear (by default it is located in
<WODM_HOME>/director/lib). Make sure that you take a copy of the original file.

2. Extract the wberuntime.jar file from the copied wberuntimeear.ear file:

jar -xf wberuntimeear.ear wberuntime.jar

3. Extract the objectGridDeployment.xml file from the wberuntime.jar file:

jar -xf wberuntime.jar META-INF/objectGridDeployment.xml

4. Edit the objectGridDeployment.xml file and change the attribute, numberOfPartitions in
the mapSet element, to your new number of partitions. The resulting entry should be similar
to the following syntax:

<mapSet name="mapSet" numberOfPartitions="40" minSyncReplicas="0"
maxSyncReplicas="0" maxAsyncReplicas="0" numInitialContainers="1">

5. Save the changes.

6. Update the wberuntime.jar with the new objectGridDeployment.xml file:

jar -uf wberuntime.jar META-INF/objectGridDeployment.xml

7. Update the wberuntimeear.ear file with the modified wberuntime.jar file:

jar -uf wberuntimeear.ear wberuntime.jar

8. In the WebSphere Application Server admin console, update the wberuntimeear.ear
application using the following steps:

a. Select Applications Application Types WebSphere enterprise applications.

b. Select the wberuntimeear application, and click Update.

c. Enter the path to the updated wberuntimeear.ear file. Click Next.

d. Default options (Fast Path) is fine here. Click Next.

e. Click Step 3 summary and click Finish.

9. After the update is done, synchronize all nodes and restart both the deployment manager
and all application servers.
48 IBM Operational Decision Management V8.0 Performance Tuning Guide

4.9.4 Disabling the WatchReset Message Driven Bean

If using WebSphere Application Server default messaging in a cluster, the WatchReset MDB
can cause unnecessary messaging traffic in the cluster. This MDB is only required if you are
using track events. For more information about track events, see the following website:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=/com.ibm.wodm.dser
ver.events.dev/topics/whatarewatchevents.html

If you are not using track events and notice a buildup of messages, consider disabling the
WatchReset MDB. To see whether messages are building up, check the actionTopic
publication points in the administration console. This view is accessed by selecting Service
integration Buses WbeBus Destinations WbeTopicSpace Publication
points (see Figure 4-14).

Figure 4-14 Messages building up on actionTopic publication point

To disable the WatchReset MDB, perform the following steps:

1. Define a new JMS topic called dummyTopic.

a. Using the administration console, navigate to Resources JMS Topics, and click
New with the scope set to Cell.

b. Make the appropriate name settings:

• Name: dummyTopic
• JNDI name: jms/dummyTopic
• Topic name: dummyTopic
• Bus name: WbeBus
• Topic space: WbeTopicSpace

c. Click OK.

2. Set the wbe_reset_watch activation specification to use the new dummyTopic.

a. Using the administration console, navigate to Resources JMS Activation
specifications, and click wbe_reset_watch.

b. Change Destination JNDI name to jms/dummyTopic.

c. Click OK.

3. Set the WatchReset MDB to use the new dummyTopic.

a. Using the administration console, navigate to Applications Application types
WebSphere enterprise applications and click wberuntimeear.
Chapter 4. Decision Server Events: Run time performance tuning 49

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=/com.ibm.wodm.dserver.events.dev/topics/whatarewatchevents.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=/com.ibm.wodm.dserver.events.dev/topics/whatarewatchevents.html

b. Under Enterprise Java Bean Properties, click Message driven bean listener
bindings.

c. Change the Destination JNDI name setting for the WatchReset bean to jms/dummyTopic
(See Figure 4-15).

d. Click OK.

Figure 4-15 Setting the Destination JNDI name for the WatchReset bean

4. Save the changes to the configuration, synchronize the nodes, and restart the cell to
acknowledge the changes.

4.10 Technology connectors tuning

The technology connectors for JMS, HTTP, SOAP, JDBC, and File System all run as
applications within the WebSphere Application Server environment. Running as an
application allows the connectors to benefit from the high availability and scalability provided
by WebSphere Application Server. This section covers some tuning considerations for these
technology connectors.

Preferred practices: High availability and high performance

� Use the silver topology for best performance if you are using WebSphere Application
Server default messaging as the JMS provider.

� Use the scalability with high availability topology if high availability and scalability are
required.

� Consider increasing the number of Object Grid partitions if you have more than eight
event runtime cluster members.
50 IBM Operational Decision Management V8.0 Performance Tuning Guide

4.10.1 Increasing the concurrency of the action connectors

When using the JMS, HTTP, SOAP, JDBC, or File System action connectors, the connector
runs as a Message Driven Bean (MDB) within the WebSphere Application Server. The MDBs
retrieve messages from the action topic or durable action topic and then process the action
before sending it to the relevant location. The concurrency of these connectors is controlled
using the activation specifications. If you are using one of these connectors and observe
messages building up on the action topic, it is possible that increasing the concurrency will
improve the rate at which actions are processed. Methods of monitoring the action topic are
covered in 4.11, “Monitoring performance” on page 54. Table 4-1 identifies the utilized
activation specifications.

Table 4-1 Action connector activation specifications

To modify the concurrency setting, using the WebSphere Application Server administrative
console, navigate to Resources JMS Activation specifications. Click the activation
specification you want to modify. The following list gives configuration points based on your
messaging provider:

� If you are using WebSphere Application Server default messaging, modify Maximum
concurrent MDB invocations per endpoint.

� If you are using WebSphere MQ as messaging provider, modify the value of Maximum
server sessions on the Advanced properties page.

4.10.2 Using a selector to retrieve actions from the action topic

If you use your own JMS client to receive actions generated by the events run time, then by
default, the subscriber will receive all actions that are published to the action topic. This will
include all the expected actions and actions that were generated for use by the connectors.
This can result in your JMS client receiving a significant number of unwanted JMS messages
and adds unnecessary load on the messaging system.

It is possible to receive only actions that the external subscriber is interested in by using a
selector when creating the subscriber. All actions are published with a JMS property of
actionName= <The action name>.

For example, to configure your system so that a selector only receives actions, you can
create a subscription using your own JMS client, called myAction. Use the following syntax:

consumer = session.createConsumer(actionTopic, actionName=myAction);

Action connector Activation specification

JMS wbeca_jms_as

HTTP wbeca_http_as

SOAP wbeca_soap_as

JDBC wbeca_jdbc_as

File System wbeca_file_as

Note: If you are using the JMS event connector, the concurrency is also controlled by the
activation specification you define on the event connector page in Event Designer.
Therefore, concurrency of both activation specifications must be reviewed.
Chapter 4. Decision Server Events: Run time performance tuning 51

Use the following syntax for a durable subscriber:

consumer = createDurableSubscriber(actionTopic, subID, actionName=myAction,
false);

4.10.3 Controlling the batch size for the JDBC event connector

When using the JDBC connector to consume events from a database, you can control how
many rows are processed in a single transaction by setting the batch size. The default batch
size is 500, which means that within a single transaction 500 rows of the database table are
processed and sent to the event run time event destination. This should be suitable for most
applications. However, if the database operation takes a long time, you can improve
performance (particularly when using either a Select & Delete or Select & Update with a
synchronization column operation) by increasing the batch size. This reduces the number of
database operations. The JMS events, sent by the connector to the event destinations, are
not committed until the batch is complete. By setting the batch size too high, you risk
overloading the event destinations by placing a large number of messages on the destination
at one time.

Take the following steps to modify the batch size:

1. Click the event in Event Designer.

2. Use the menu bar to select Window Show view Properties.

3. Click the cell as shown in Figure 4-16, then click Add.

Figure 4-16 Increasing the batch size for the JDBC event connector

4. Set the property as MAX_BATCH_SIZE and the value to the batch size required.
52 IBM Operational Decision Management V8.0 Performance Tuning Guide

5. Click Finish.

6. Save the event, then deploy the project to the run time.

4.10.4 Controlling the File System event connector event delivery rate

By default, the File System connector processes lines from a file as fast as possible. This can
result in the connector sending events to the run time at a faster rate than the run time can
process them. Events sent at this pace can lead to a buildup of messages on the JMS event
destinations, which can affect performance. Other types of events might have to wait in the
queue before they are processed.

It is possible to control the rate at which the File System connector sends events to the run
time using a JVM property. The rate is specified in events per second. The connector will aim
to meet this target but it is not a guaranteed send rate.

When using the File System connector, if you notice the event destinations are filling up,
consider changing the event delivery rate to limit the rate of production. The rate should be
set to a value below the rate at which the run time can process events. Making this parameter
change will avoid events building up on the JMS event destination.

Use the following steps to set this parameter:

1. In the WebSphere Application Server administrative console, navigate to Servers
Server Types WebSphere application servers server1 Java and Process
Management Process definition Java Virtual Machine.

2. As shown in Figure 4-17, add the following to the Generic JVM arguments:

-Dcom.ibm.wbe.ca.file.rate=1000

Figure 4-17 Setting the File System connector event delivery rate

3. Click Apply, then save the change to the configuration.

4. In a cluster, synchronize the change to the nodes.

5. Restart all servers to acknowledge the change.

4.10.5 Distributing events across a cluster when using the JDBC and File
System technology connectors with WebSphere Application Server
default messaging

The JDBC and File System event connectors run on a single cluster member at a time.
However, they will fail over to another server if the cluster member they are running on stops.
If you are using WebSphere Application Server default messaging with the silver topology
(discussed in “Silver topology” on page 44), this can result in all events produced by the JDBC
and File System event connectors being consumed by just one cluster member. If you are
using the JDBC or File System event connectors in a cluster and observe that one server is
significantly busier than the others, then you might benefit from configuring WebSphere
Chapter 4. Decision Server Events: Run time performance tuning 53

Application Server to balance messages across all available queue points. For more
information see Workload sharing with queue destinations at:

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.
nd.doc/info/ae/ae/cjt0014_.html

Take the following steps to configure this setting using the WebSphere Application Server
administrative console:

1. Navigate to Resources JMS Queues and click eventQueue.

2. Under Control across multiple queue points per Message Producer set the Local
queue point preference to Do not prefer a local queue point over other queue
points.

3. Repeat step 2 for the durableEventQueue.

4. Click Apply, then save the changes to the configuration.

5. Restart all cluster members so that the change takes effect.

4.11 Monitoring performance

This section discusses the tools that are available for performance monitoring.

4.11.1 Performance Monitoring Infrastructure (PMI)

Decision Server Events has a number of built-in PMI statistics to help users understand and
monitor the performance of their applications. These statistics can help answer the following
questions:

� What event types are arriving, and at what rates?

� What event rules and rule groups are being executed?

� What actions are being generated?

� At what rates are these things occurring and how many times have they occurred since
monitoring was started?

� Are you using the level of JMS persistence you are expecting?

� Are you processing events fast enough, or are they building up on queues or topics?

If Decision Server Events is using default messaging as the JMS provider, then additional
information about the queues and topics will also be available.

Further information about PMI statistics can be found in the Operational Decision
Management information center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=/com.ibm.wodm.dser
ver.events.monitoring/topics/monitoringbyusingpmi.html

4.11.2 Service Integration Bus Performance tool

The Service Integration Bus Performance tool automatically starts and dynamically displays
the relevant, key performance statistics for Decision Server Events users. It is an IBM
developerWorks® offering, rather than an IBM product. This offering has been used by many
54 IBM Operational Decision Management V8.0 Performance Tuning Guide

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=/com.ibm.wodm.dserver.events.monitoring/topics/monitoringbyusingpmi.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/cjt0014_.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/cjt0014_.html

customers during their testing phase to provide a real-time understanding of Decision Server
Events performance. To access the tool see the following website:

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityv
iew?communityUuid=13a714e5-6379-4325-aeee-c0c88ec3d15b

4.11.3 Service Integration Bus Explorer tool

The Service Integration Bus Explorer tool can be used to view and manage messaging
resources in a Service Integration Bus. To access the tool see the following website:

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityv
iew?communityUuid=fe21f954-66dd-40c2-bfc4-45eb0b7d51eb

4.11.4 WebSphere MQ Explorer Tool

When using WebSphere MQ as the JMS provider, the JMS performance data can be
monitored with the standard WebSphere MQ tool known as WebSphere MQ Explorer.

4.11.5 Hardware monitoring

Standard operating system tools (such as, perfmon for Windows and iostat/vmstat for
Linux and UNIX) can be used to monitor disk activity, CPU usage, and memory usage.
Monitoring these areas helps you to determine whether the disk subsystem’s processing
speed or paging is limiting performance.

4.12 Advice on benchmarking applications

When evaluating the performance of Decision Server Events, it is important to use a
representative workload. Review the following list for important considerations:

� As with all Java performance measurements, ensure that the JIT has compiled the Java
code before making any measurements. You can achieve this by running several
thousand representative events through Decision Server Events after starting it for the first
time.

� Ensure that you use a realistic number of context IDs for your expected production
workload. This ensures that the database activity, in storing event context information and
retrieving related events, is representative.

� Ensure that the input workload is not overloading the Decision Server Events input queues
or topics. If the input rate is too high, events back up onto the input destinations until they
are full, and you will not get accurate measurement of steady state performance.

� Monitor the CPU, network, disk, and memory utilization to ensure the throughput is not
being constrained by hardware limitations.

� Ensure the Decision Server Events and database servers are tuned in accordance with
this paper and the product documentation.

The advice provided in this document is based on measurements taken for certain workloads
on certain hardware. Although the advice should be valid for most Decision Server Events
workloads on most operating systems and hardware, you should always verify any changes
in a suitable performance measurement environment before deploying them in production.
Chapter 4. Decision Server Events: Run time performance tuning 55

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=13a714e5-6379-4325-aeee-c0c88ec3d15b
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=fe21f954-66dd-40c2-bfc4-45eb0b7d51eb

4.13 Diagnosing performance problems

This section shows how to identify and resolve performance bottlenecks within Decision
Server Events.

4.13.1 Obtaining diagnostic information

The first step in the process is to obtain the necessary diagnostic information for problem
analysis and resolution.

Generating Java cores
A Java core is an important source of information that contains a snapshot of thread activity,
locks, class loading, and limited information about memory usage. Java cores can be
generated using the WebSphere Application Server administrative console and following
these steps:

1. Select Troubleshooting Java dumps and cores.

2. To generate a Java core, select the check box next to the server name and click the Java
core button, as shown in Figure 4-18.

Figure 4-18 Generating Java cores

This will cause a Java core file, javacore.date.time.processid.javacoreNumber.txt, to be
generated in the profile root directory of the selected server. The following example shows
sample syntax:

<WODM_HOME>\WAS\AppServer\profiles\WODMSrv01\bin\javacore.20120829.132204.6932.000
1.txt

For diagnostic purposes, it is preferred practice to take three or more Java cores at least 30
seconds apart. This will provide different snapshots for analysis and comparison.

Preferred practices: Performance measurement

� Ensure that the Java code on the server is JIT-compiled.

� Use a realistic number of context IDs.

� Ensure that measurements are steady state, that is, that the JMS event and actions
queues and topics are not overloaded.

� Monitor system performance to identify any system limitations, including CPU, memory,
disk, and network limitations.
56 IBM Operational Decision Management V8.0 Performance Tuning Guide

Problem determination, messaging queue and topic depths
The event destination and action topic queue depths can be monitored. The following list
notes two products that can be used:

� Performance Monitoring Infrastructure statistics for WebSphere default messaging
� WebSphere MQ Explorer tool for WebSphere MQ

These are discussed in the section on “Monitoring performance” on page 54.

System performance
System performance (disk activity, CPU, and memory) can be monitored using standard
operating system tools such as perfmon for Windows and iostat/vmstat for Linux and UNIX.

4.13.2 The number of messages on the event destination is growing over time

If the number of messages on the event destination is continually growing, and there is spare
CPU capacity on the Decision Server Events server, the most likely cause is a shortage of
event rule processing threads. See “Tuning the number of event rule processing threads” on
page 26.

There might be other causes, which can be investigated by generating a Java core, as
described in the previous section. Open the Java core file and search the thread stacks for
the following text strings to see how many threads are engaged in a given activity:

� SlaveEngine.processNext

These are the event rule processing threads. For each thread in the Java core with this
method, review the top few items in the stack to see the current activity of the rule
processing threads.

If 20% or more of the rule engine threads have java/lang/Object.wait as the top of the
stack, with JobQueue.read further up the stack, this indicates that there are idle event rule
processing threads available to do work. See Figure 4-19 for an example.

Figure 4-19 Java call stack for an idle rule processing thread

No additional event rule processing threads should be required. This assumes that the
total number of event rule processing threads is not exactly divisible by either of the
following numbers:

– The total number of WebSphere eXtreme Scale partitions on each cluster member

– The number of WebSphere eXtreme Scale partitions on each cluster member

This division was discussed in “Tuning the number of event rule processing threads” on
page 26. This assumption is true in a default configuration. If you have changed the
number of event rule processing threads, or the number of WebSphere eXtreme Scale
partitions, ensure that you have not violated this principle. If this principle is not adhered
to, some event rule processing threads will always be idle and you will not achieve optimal
concurrency.

Java callstack:
at java/lang/Object.wait(Native Method)
at java/lang/Object.wait(Object.java:196(Compiled Code))
at EDU/oswego/cs/dl/util/concurrent/LinkedQueue.poll(Bytecode PC:101(Compiled Code))
at com/ibm/wbe/utils/LinkedQueue.poll(LinkedQueue.java:86(Compiled Code))
at com/ibm/wbe/utils/JobQueue.read(JobQueue.java:320(Compiled Code))
at com/ibm/wbe/server/engine/SlaveEngine.processNext(SlaveEngine.java:404(Compiled Code))
Chapter 4. Decision Server Events: Run time performance tuning 57

If all of the rule engine threads are busy, but are not engaged in the same activity, consider
increasing the number of event rule processing threads. For reference, this concept is
discussed in the section on “Tuning the number of event rule processing threads” on
page 26.

If a large number of threads (90% or more) are involved in the same activity, this suggests
that activity is responsible for the performance bottleneck. For example, if 90% of the
threads are making JDBC calls to a database, then the database is likely to be the
performance bottleneck. Consider tuning or increasing the capacity of the database.
Increasing the number of event rule processing threads might also improve performance.

� EventReceiverBean.onMessage

These are the Message Driven Bean (MDB) threads that remove the events from the
event destination and pass them to the event rule processing threads.

If the number of threads containing this method is equal to MDB concurrency, then
increasing the MDB concurrency is likely to improve performance. Information about MDB
concurrency can be found in two sections:

– For WebSphere Application Server default messaging and MDB, see “Concurrent
processing: WebSphere Application Server default messaging” on page 35.

– For WebSphere MQ and MDB, see “Concurrent processing: WebSphere MQ” on
page 40.

If the top of the stack of any of these MDB threads is java/lang/Thread.sleep, then the
event rule processing threads are overloaded and are temporarily unable to accept events
from the MDBs. See Figure 4-20.

Figure 4-20 Java call stack for MDBs when event rule processing threads are busy

Overloading might occur if you send a large number (thousands) of events with the same
context ID in quick succession. In this case, if possible, ensure your context IDs have a better
distribution. Overloading can also signify that the event rule processing threads are unable to
cope. In that case, analyze the event rule processing threads as discussed previously to find
the reason why they are unable to cope.

Java callstack:
at java/lang/Thread.sleep(Native Method)
at java/lang/Thread.sleep(Thread.java:851(Compiled Code))
at
com/ibm/wbe/server/engine/objectgrid/ObjectGridHelper.dispatch(ObjectGridHelper.java:284(Compi
led Code))
at com/ibm/wbe/server/engine/MasterEngine.dispatch(MasterEngine.java:787(Compiled Code))
at com/ibm/wbe/server/EventProcessor.process(EventProcessor.java:385(Compiled Code))
at
com/ibm/wbe/server/DurableEventPersistenceImpl.eventReceiverQueueWrite(DurableEventPersistence
Impl.java:70(Compiled Code))
at com/ibm/wbe/server/ReceiverBeanHelper.ProcessMessage(ReceiverBeanHelper.java:206(Compiled
Code))
at ejbs/EventReceiverBean.onMessage(EventReceiverBean.java:55(Compiled Code))
58 IBM Operational Decision Management V8.0 Performance Tuning Guide

4.13.3 Other potential performance issues

The following list notes miscellaneous performance issues that you might encounter and
tuning options:

� The number of messages on the action topic is growing over time.

This can happen when using connectors and indicates additional tuning is required. See
the section on “Increasing the concurrency of the action connectors” on page 51.

If using WebSphere Application Server default messaging in a cluster, then consider
disabling the WatchReset Message Driven Bean. For details, see 4.9.4, “Disabling the
WatchReset Message Driven Bean” on page 49.

� The number of messages on the history destination is growing over time.

Review the tuning advice in the section on “Tuning history processing” on page 30.

� Messages such as Failed to dispatch event after 600 retries due to
PersistentEngineQueue full exception appear in the SystemOut.log file.

If this is seen in the SystemOut.log files, then the event rule processing threads are
overloaded and are temporarily unable to accept more work. Analyze the event rule
processing threads as discussed previously. Analyzing will help identify the reason why
threads are unable to cope.
Chapter 4. Decision Server Events: Run time performance tuning 59

60 IBM Operational Decision Management V8.0 Performance Tuning Guide

Chapter 5. Decision Server Rules: Rule
Designer tuning

Rule Designer is the development environment for business rule applications. It is integrated
into Eclipse. Developers can take advantage of this integration to develop their Java projects
with rule projects. Developers and architects can therefore use Rule Designer to integrate and
deploy the business rule application into their enterprise client application.

Architects, developers, and business analysts use Rule Designer to design the business rule
application, author, review, and debug business rules. Rule Designer also has tools for
keeping the rules synchronized with the Decision Center repository.

The following topics are covered in this chapter:

� Tuning of build
� Tuning of the synchronization
� Guidelines for benchmarking an application
� Analyzing the rule project characteristics

5

© Copyright IBM Corp. 2013. All rights reserved. 61

5.1 Tuning of build

Here are some suggestions to optimize the build performance for rules:

� For large rule projects, turn off the automatic build feature:

Select Rule Designer Menu Project and clear the Build Automatically flag.

� Turn off the BOM to XOM and IRL checks:

Select Rule Designer Menu Windows Preferences Rule Designer Build.
Then, clear the following options:

– Perform BOM to XOM checks during build
– Perform IRL checks during build

Clearing these options provides optimal performance. However, you lose the rule analysis of
your rule set. See Figure 5-1.

Figure 5-1 Build preferences

Decision tables can be optimized use the following steps:

1. Right-click a decision table to access its properties.
2. Remove the Table Checks on Overlap and Gap, as shown in Figure 5-2 on page 63.
62 IBM Operational Decision Management V8.0 Performance Tuning Guide

Figure 5-2 Decision Table Properties

5.2 Tuning of the synchronization

To optimize the synchronization and publishing of projects from Rule Designer to Decision
Center, do the following steps:

� Ensure that Rule Designer and Decision Center have an adequate heap size. This is
important because synchronization is a computation- and memory-intensive process.

� Restructure your rule project so that the rules are split among multiple top-level packages.
This is important because synchronization is done at the top package level. Many rules in
a single top-level package can therefore be a significant bottleneck during
synchronization.
Chapter 5. Decision Server Rules: Rule Designer tuning 63

5.3 Guidelines for benchmarking an application

To avoid performance issues in your rule projects, consider the following suggestions:

� Understand, document, and communicate your performance objectives.

� Consider recording your performance measurements as you modify your XOM and rules.
It is much easier to see the impact of adding a synchronized method call to the XOM, or
adding a rule with a complex join, if you have a record of previous performance
measurements.

� Performance test with realistic data. There is no point optimizing for a dummy data set that
bears no resemblance to the expected production workload. For example, you should test
with a realistic number of concurrent executions.

� Understand the frequency with which the methods in your XOM are invoked by rules,
particularly if you are doing lots of inferencing using the RETE algorithm.

� Spend time optimizing your XOM where profitable.

� Spend time getting to know the features of your profiler.

� Continue the performance measurements when the application is in production because
the number of rules can increase (sometimes by as much as 10% to 50% in a year).

5.4 Analyzing the rule project characteristics

Rule Designer has a tool to evaluate the complexity of the opened rule projects.

The tool is accessed by right-clicking the project and selectingExport Rule Designer
Rule Project Statistics. The result is a report that details the following project statistics:

� Properties of the projects
� Business object model characteristics
� BOM2XOM mapping statistics
� Action rules statistics
� Decision tables statistics
� Rule flow statistics
� Vocabularies statistics

The main points to check are the rule flow, the decision tables, the business object model,
and vocabularies. Consider the following points when you review the statistics:

� In the rule flow statistics, verify what algorithm is used by the rule set.

� In the decision tables section, check the number of rows and the complexity by number of
conditions and actions.

� In the business object model section, check the complexity of the model that is
manipulated by the rule project.

� In the vocabularies section, check the number of phrases that have an impact on the
usability of the rules editor.
64 IBM Operational Decision Management V8.0 Performance Tuning Guide

Chapter 6. Decision Server Rules: Rule
engine execution tuning

The rule engine processes the rules provided to it. The basic functions of the rule engine are
to read its rules dynamically at run time, to reason on objects it knows, and to keep track of
changes to those objects. Finally, the rule engine will invoke the execution of rules, also
known as firing the rules.

The following topics are covered in this chapter:

� Academic benchmarks usage

� Rule engine execution mode choice

� Tips and tricks for business rule applications

� Rule engine performance cost breakdown

6

© Copyright IBM Corp. 2013. All rights reserved. 65

6.1 Overview of the rule engine

Rules are provided to the rule engine, which starts the processing of the rules. The rule
engine evaluates the rules against the application objects and, when appropriate, executes
rule actions. The rule engine can operate on ruleset parameters, local ruleset variables, and
native objects inserted into the working memory (references). Rules are evaluated according
to the ruleflows contained in the ruleset archive. If there is no ruleflow, all the rules in the
ruleset are evaluated. Figure 6-1 shows an overview of the rule engine and the process
functions.

Figure 6-1 Rule engine overview

6.2 Academic benchmarks usage

A benchmark is a standard. The tendency is to look to a standard for comparison of your own
results or to prove the performance quality of a product. However, benchmarks can be
sterilized or static environments that have little to do with the real world environments of the
industry. The following list notes some of the problems with academic benchmarks:

� Small number of rules (less than 50).

� Test worst-case RETE inference and agenda usage, which is rarely encountered with well
designed applications.

� Implement solutions to combinatorial search problems, which are typically better
implemented using a constraint programming (CP) engine rather than a RETE engine.

� No usage of common patterns such as ruleflow and sequential execution.

� The solutions are not verified, meaning that correctness might be sacrificed for speed.
This is particularly true for Waltz and WaltzDB.

Ruleset

Rule Studio

Rule Engine Object

A
P
I

Ruleset

Working Memory
(referenced objects)

Agenda
(fireable rules)

Objects
(Java)
(XML)
66 IBM Operational Decision Management V8.0 Performance Tuning Guide

http://www-01.ibm.com/software/integration/optimization/cp-optimizer/

� The benchmarks are easy to manipulate because vendors can port from the original
OPS5 source code into their own rule language, where they can take advantage of their
product’s features.

For reference, here are descriptions of the three most famous academic benchmarks:

� Manners

Manners is based on a depth-first search solution to the problem of finding an acceptable
seating arrangement for guests at a dinner party. The seating protocol ensures that each
guest is seated next to someone of the opposite sex who shares at least one hobby.

� Waltz

Waltz was developed at Columbia University. It is an expert system designed to aid in the
three-dimensional interpretation of a two-dimensional line drawing. It does so by labeling
all lines in the scene based on constraint propagation. Only scenes containing junctions
composed of two and three lines are permitted. The knowledge that Waltz uses is
embedded in the rules. The constraint propagation consists of 17 rules that irrevocably
assign labels to lines based on the labels that already exist. Additionally, there are four
rules that establish the initial labels.

� Waltzdb

Waltzdb was developed at the University of Texas at Austin. It is a more general version of
the Waltz program. Waltzdb is designed so that it can be easily adapted to support
junctions of four, five, or six lines. The method that is used in solving the labeling problem
is a version of the algorithm described by Winston [Winston, 1984]. The key difference
between the problem solving technique used in Waltz versus Waltzdb is that Waltzdb uses
a database of legal line labels that are applied to the junctions in a constrained manner. In
Waltz, the constraints are enforced by constant tests within the rules. The input data for
Waltz is a set of lines that are defined by Cartesian coordinate pairs.

If performance is one of your major buying criteria, you are encouraged to build a
proof-of-concept (POC) set of rules and data. Then, verify rule engine performance in your
own environment. It is impossible to extrapolate from published academic benchmark results
to your running application, with your rules and data, deployed to your OS and hardware. The
POC will also allow you to evaluate the BRMS from as many angles as possible (spanning
ease of use, business user accessibility, support and professional services, performance,
deployment platforms, scalability, and so on).

6.3 Rule engine execution mode choice

You can choose an execution mode for each rule task in your ruleflow. By default, a rule task
is assigned the RetePlus execution mode. To achieve optimal performance, you might need
to choose another execution mode that is better adapted for the rules in a particular rule task.
Chapter 6. Decision Server Rules: Rule engine execution tuning 67

Table 6-1 shows which mode to choose for each case.

Table 6-1 Quick view of execution mode selection

To determine which execution mode you should use on a rule task, analyze both the structure
of the rules in the rule task, and what type of processing they perform. To make the best
choice, you need to consider the following factors:

� Types of objects used by your rules
� Impact of rule actions
� Impact of tests in rule conditions
� Impact of priorities set on rules
� Who will modify the rules
� What are your performance goals

These factors are covered in more detail in the following sections.

6.3.1 Types of objects used by your rules

The preferred execution mode is based on the types of objects that are acted upon by your
rules.

Working memory objects or ruleset parameters
If the objects you use in your rules are passed with ruleset parameters, we suggest that you
use the Sequential or Fastpath execution modes. If they are objects that you inserted into a
working memory, the RetePlus or Fastpath execution modes are preferred.

Bindings
Bindings are considered heterogeneous when rules do not operate on the same classes. With
heterogeneous bindings, the rules might have condition parts of different heights, as shown in
Table 6-2.

Table 6-2 Heterogeneous bindings

Mode Condition

RetePlus (the default
mode)

All included semantically
Stateful application
Rule chaining
Useful in the case of many objects and limited changes

Sequential Cover most of the customer cases
Many rules, few objects, but has limitations
Highly efficient in multi-thread environment

Fastpath Rules implementing a decision structure, many objects
Might have longer compilation but faster at run time
Highly efficient in multi-thread environment

Rule Format

Rule1 ... when{A();B()} ...

Rule2 ... when{A()} ...

Rule3 ... when{B()} ...
68 IBM Operational Decision Management V8.0 Performance Tuning Guide

If your rules define heterogeneous bindings on the Working Memory, the RetePlus or
Fastpath execution modes are preferred.

If your rules define heterogeneous bindings on the ruleset parameters, all execution modes
can be used, including the sequential execution mode.

Bindings are considered homogeneous when all of the rules operate on the same class (the
same kind and number of objects), but introduce different tests. See Table 6-3.

Table 6-3 Homogeneous bindings

If your rules define homogeneous bindings, all execution modes can be used, including the
sequential execution mode.

6.3.2 Impact of rule actions

The choice of execution mode depends upon the effects that are generated by your rules on
execution.

Modifications to the working memory
If the actions of your rules manipulate working memory objects, with the use of the IRL
keywords insert, retract, or update, then you must use the RetePlus execution mode.
Because these keywords entail modifications to the working memory, the rule engine
reevaluates subsequent rules.

If you use another execution mode, the rule engine will not reevaluate subsequent rules after
the modifications.

Rule chaining
When your rule actions trigger modifications in the working memory or the parameters, and
when they do pattern matching on objects that have no relationship, like people and hobbies,
there is chaining between your rules. Example 6-1 shows a sample rule chain.

Example 6-1 Rule chaining

SILVER LEVEL CUSTOMER, GREATER THAN $5000 purchase
promote to GOLD LEVEL
GOLD LEVEL CUSTOMER, GREATER THAN $5000 purchase
apply 25% discount

You can see in Example 6-1 that there is chaining between these two rules. They do pattern
matching on two different objects (customer and purchase) and the second one will modify
the level attribute of the customer object.

If you need the rules to take into account modifications done by other rules, you can use Rete
execution and its rule chaining capability. Another option, if it possible to clearly split the rules
that have to be executed first and then move to the other rules, you can use a sequence of
rule tasks.

Rules Format

Rule1 ... when{Person(age == 12);} ...

Rule2 ... when{Person(age > 20);} ...
Chapter 6. Decision Server Rules: Rule engine execution tuning 69

6.3.3 Impact of tests in rule conditions

The execution mode will differ depending on the type of conditions used in your rules.

Tests that require a working memory
If you have rule conditions that test the existence of an object or gather items in a collection
directly in working memory, with the IRL keywords exists or collect and without in or from
constructs, the preferred practice is to use the RetePlus or Fastpath execution modes.

Regular pattern for tests
If the tests in rule conditions have the same pattern and order, such as the tests that are
generated from decision tables, the preferred practice is to use the Fastpath execution mode.

If the order of tests in rule conditions is not regular, then use the RetePlus or sequential
execution modes.

6.3.4 Impact of priorities set on rules

If you set static priorities on your rules, you can use any algorithm. However, if you set
dynamic priorities, that is, priorities that are defined as an expression, then you must use the
RetePlus execution mode. The dynamic priorities are deprecated.

6.3.5 Impact of business user role

If business rules are modified and managed by business users, avoid using rule chaining.
The performance and semantics of rule chaining is extremely sensitive to rule modification or
addition. To reduce risk, use a sequence of rule tasks to simulate rule chaining.

6.3.6 Performance goals

At run time, we can divide the performance goals into three categories:

� Ruleset loading: Consider the following information if ruleset loading is a key performance
goal:

– Using RetePlus or Sequential execution.
– Fastpath is generally slower to load.
– The complexity of the ruleflow should be limited.

� Execution performance: Depends on the type of business rules:

– If your rules are homogeneous (Decision table case), try Fastpath

– If you need rule chaining:

• Use RetePlus, but limit the use of the update flag on your BOM to accurate method
or attribute. This flag forces a reevaluation of the Rete network each time this
method is called.

• Use several ruletasks in your ruleflow. With this option, you can manage a rule
chaining at ruletask level (Sequential or Fastpath) and avoid the RetePlus usage.

� Concurrent executions:

– If you know that you will have many concurrent executions, you should choose
Sequential or Fastpath.
70 IBM Operational Decision Management V8.0 Performance Tuning Guide

– RetePlus does not have the scalability of Sequential or Fastpath when the number of
concurrent executions is increasing.

– The ruleflow complexity has a performance impact when the number of concurrent
executions is increasing. This complexity depends on the number of subflows and on
the number of ruletasks that are evaluated per execution.

Use Table 6-4 as a reference when choosing an execution mode for a rule task.

Table 6-4 Choosing an execution mode

6.4 Tips and tricks for business rule applications

For many people, business rule software is a new technology. The skills required to
understand the performance profile of an application using a rule engine are still developing.
For example, is a database call faster or slower than invoking a set of 1000 rules? Of course,
the answer depends on a number of factors. This section notes optimal practices when
dealing with performance issues in business rule applications.

For applications with stringent performance targets or service level agreements, you should
consider continuous performance monitoring. By investing daily in a small amount of

RetePlus Sequential Fastpath

Ruleset loading Quick on small
ruleset, slow on large
ruleset

Quick, but slower than
RetePlus on small
ruleset

Slower than
Sequential (rule
analysis and bytecode
generation)

Multi-thread scalability Poor Good Good

Limitations No Collect in working
memory. Note that
not/exists are limited,
no dynamic priority

No dynamic priority

Working memory objects Yes Yes, but only
recommended with
homogeneous rule
conditions

Yes

Ruleset parameters Yes Yes Yes

Rule chaining Yes No No

Tests on existence or collection items
directly in working memory

Yes Limited Yes

Shared test patterns Syntactic
homogeneous
conditions

No (but test sharing
option)

Semantic
homogeneous
conditions

Heterogeneous bindings Yes No Yes

Dynamic priorities Yes No No

Runtime rule selection that selects a few
rules among many

Good Good Low performance
(because of full
evaluation cost)

Numerous rules No Yes Yes
Chapter 6. Decision Server Rules: Rule engine execution tuning 71

performance monitoring, you can avoid expensive refactoring due to performance issues
found at the end of your development cycle. This is particularly important for business rule
applications. In these applications, the relationship between the rules being authored and the
code being invoked at run time is not as obvious as with a traditional
single-programming-language procedural software system.

Consider the basic sequence of operations that are required to invoke a ruleset using JRules:

1. Ruleset archive is parsed, creating an IlrRuleset.

2. Instantiation of an IlrContext for the IlrRuleset.

3. Creation of input data (IN, INOUT parameters) for the ruleset.

4. Optionally add objects to working memory.

5. Execute the ruleset.

6. Retrieve INOUT and OUT parameters.

7. Optionally, retrieve objects from working memory.

8. Reset IlrContext for subsequent execution.

Operation 1 is costly, and for a large ruleset containing more than 10,000 rules, it can take
several minutes. However, it is a one-time cost because the resulting IlrRuleset should be
pooled for subsequent reuse. Rule Execution Server provides out-of-the-box caching of
IlrRuleset and IlrContext.

Operation 3 is often slow because this is where your code hits various expensive back-end
systems, such as databases, to retrieve the data that is required by the rule engine. Caching
within your code might be a useful optimization.

The time required for Operation 5 depends on the details of the rules, ruleflows, and rule
tasks within your ruleset. The rules typically invoke methods in your Java Executable Object
Model (XOM). It is important to determine the amount of time that is spent within your code
versus the time that is spent within the rule engine or within the rules.

Additional information about optimizing execution can be found in the Operational Decision
Management information center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=%2Fcom.ibm.wodm.ds
erver.rules.designer.run%2Foptimizing_topics%2Ftpc_optimizing_execution.html

6.5 Rule engine performance cost breakdown

Performance cost is also a part of tuning awareness. The performance cost for a JRules
application might look similar to Figure 6-2 on page 73.
72 IBM Operational Decision Management V8.0 Performance Tuning Guide

http://publib.boulder.ibm.com/infocenter/brjrules/v7r0/index.jsp?topic=/ilog.rules.jrules.doc/Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global946.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=%2Fcom.ibm.wodm.dserver.rules.designer.run%2Foptimizing_topics%2Ftpc_optimizing_execution.html

Figure 6-2 Execution Time

The majority of application time is typically spent within the XOM code invoked by the rules. It
is therefore critical to get a good understanding of which methods within your XOM code are
going to be invoked by rules and roughly how frequently. This might also include
synchronization considerations. If you have 10 rule engines concurrently calling a
synchronized method within your XOM, your throughput is going to suffer.

Execution Time

XOM
Ruleflow
Functions
B2X
Misc. Rule Engine
JVM (GC)
Chapter 6. Decision Server Rules: Rule engine execution tuning 73

74 IBM Operational Decision Management V8.0 Performance Tuning Guide

Chapter 7. Decision Server Rules: Rule
Execution Server tuning

The Rule Execution Server is a rules execution environment. Management, performance,
security, and logging capabilities are provided in this environment. Rule Execution Server
enables you to change business logic in a dynamic way because it lets you interact with the
rule engine as a set of components. For this to work smoothly, tuning is critical. This chapter
discusses the preferred tuning when the workload is limited to rules execution.

The following topics are covered in this chapter:

� Basic configuration for good performance
� Impact of ruleset characteristics on performance
� Hints

– Impact of ruleset XOM on performance
– Impact of execution mode on performance (trace and Decision Warehouse)
– Architecture of your application choice (Engine, JSE, or Java EE Rule Execution

Server)
– Impact of topology on performance (JSE embedded, Java EE shared, Java EE

isolated)
– Optimization of the XU pool size and parsing
– Rule Execution Server and clustering

� Analyzing the status of the Rule Execution Server
� Performance of Rule Execution Server with sequential algorithm
� Performance of Rule Execution Server with fastpath algorithm
� Performance of Rule Execution Server with RetePlus algorithm
� Performance impact of the number of concurrent users

7

© Copyright IBM Corp. 2013. All rights reserved. 75

7.1 Features of the Rule Execution Server

The Rule Execution Server is a complete execution and management environment for
business rule applications. It provides a number of features, noted in the following list, that
are required for high-performance, scalable, and manageable applications:

� Pooling of rulesets and contexts.

� Hot deployment of rulesets and asynchronous parsing.

� File and database persistence of deployed rulesets.

� Web-based system administration console.

� Runtime monitoring of execution using the Java Management Extensions (JMX) API.

� Client APIs: stateless Plain Old Java Object (POJO), stateful POJO, stateless EJB,
stateful EJB, stateless JSE, stateful JSE, asynchronous execution and Message Driven
EJB for asynchronous invocation, with optional execution trace or with optional auditable
execution trace recording (Decision Warehouse).

� Easy service-oriented architecture (SOA) deployment: One-click configuration and
integrated monitoring of rules as Transparent Decision Services.

� Simple testing and simulation of effects from rule changes (Decision Validation Services).

Figure 7-1 shows how the architecture incorporates the execution and management or
monitoring stacks.

Figure 7-1 Rule Execution Server Architecture

By deploying the Rule Execution Server for Java EE or JSE applications), your business rule
applications automatically take advantage of the execution and management services that
are offered by Decision Server Rules. You also avoid having to implement ruleset and context
pooling within your application code. Your overall application build and deployment processes
can also integrate the Ant << ? >>tasks IBM provides for the Rule Execution Server.

Execution Components

Execution Unit (XU)

Persistence

File SystemDB

JMX Web Console

Management Model

Persistence

Execution Stack Management/Monitoring Stack
76 IBM Operational Decision Management V8.0 Performance Tuning Guide

7.2 Basic configuration for good performance

Use the following guidelines for the basic configuration settings:

� The log level in the Rule Execution Server should be set to level Severe or Warning in the
production environment to increase performance. This property is accessible in the
resource adapter of the Rule Execution Server or in the ra.xml.

� The Execution Unit (XU) pool size should be tuned to have enough connections but with a
reasonable memory consumption.

� The ruleSession factory should be unique and shared between HTTP sessions, otherwise
a lookup JNDI is performed for each factory creation.

� If you do not use stateful rule sessions and the transactions are at engine level, you
should deactivate the transaction support in the Rule Execution Server and set
NoTransaction instead of LocalTransaction in the properties of Rule Execution Server
(XU) or in the ra.xml. If you have some code in your Executable Object Model (XOM) or
rules that use a data source, the call to the data source can participate in the transaction
even if the XU transaction support is disabled. The XU transaction support, set in the
ra.xml, only concerns the engine run time itself and not other resources, even if they are
called by the engine.

� Use up-to-date ruleSessions libraries:

– Do not use old versions.
– Integrate the correct version of the ruleSession in the classpath of your application.

� Tune the GC and memory size. On IBM JVMs, the gencon GC policy delivers good
performance.

� Use the asynchronous parsing of the Rule Execution Server if you have ruleset update in
the application’s use cases. This option is available in the properties of Rule Execution
Server (XU) or in the ra.xml.

� Use the execution trace and the Decision Warehouse only if it is mandatory, and tune the
usage if needed (filtering).

� Limit the size of your XOM to useful classes.

� When it is turned on, Java2security will halve performance capabilities. Java2security
should be turned off if possible, especially on Java EE.

7.3 Impact of ruleset characteristics on performance

The size of a ruleset has a significant impact on the following properties:

� Parsing time
� Execution with traces (number of rules, tasks, ruleflow)
� Execution with Decision Warehouse (number of rules, tasks)

Performance is greatly affected by the following issues:

� Ruleflow complexity (note that the ruleflow is interpreted, not compiled, in Decision Server
Rules V8.).

� The use of dynamic filters in the rule tasks. When possible, use a fixed list of rules for a
particular rule task; otherwise, the list of rules is recalculated each time that the task is
executed, which has a significant affect on performance.
Chapter 7. Decision Server Rules: Rule Execution Server tuning 77

http://publib.boulder.ibm.com/infocenter/brjrules/v7r0/index.jsp?topic=/ilog.rules.jrules.doc/html/api/html/ilog/rules/res/session/IlrSessionFactory.html
http://publib.boulder.ibm.com/infocenter/brjrules/v7r0/index.jsp?topic=/ilog.rules.jrules.doc/html/api/html/ilog/rules/res/session/package-summary.html

� Decision table complexity: Verify the size of the decision table in the Rule Studio technical
view. Dividing a decision table several times can sometimes have a huge impact on the
ruleset size by reducing it.

� Algorithm selection (see “Rule engine execution mode choice” on page 67).

7.4 Hints

If you encounter memory or performance issues, consider the following list of possible causes
and solutions:

� Filtering what gets traced can help minimize the performance overhead that is associated
with execution tracing and the decision warehouse.

� A ruleset with mixed algorithms (such as combining Rete with Sequential or Rete with
Fastpath) consumes more memory than a ruleset with a single algorithm.

� You can use the ruleflow with mutual exclusive rule tasks to reduce the number of rules
that are evaluated during the execution. In this way, the ruleset is segmented. Only the
rules from relevant ruletasks are evaluated. For example, divide a ruleset of 20,000 rules
into five ruletasks of 4000 rules. Then, create a simple condition so that only one ruletask
is evaluated. The performance of this divided ruleset is similar to the performance of a
ruleset with 4000 rules with a single ruletask on the same XOM.

7.4.1 Impact of ruleset XOM on performance

The XOM affects performance in the following ways:

� Execution of rules will call XOM methods, so the performance of the XOM is crucial. The
Java XOM must be thread-safe to ensure system stability. A synchronized method could
have a real impact on performance in case of concurrent executions. The synchronized
section of your XOM should be minimized.

� The Java XOM must implement Serializable if you call the Rule Execution Server
remotely.

� The size of the Java XOM, deployed in your EAR, has an impact at the parsing and
execution level. The class loader should be the smallest loader possible. For example, do
not put the complete Java EE jars in the WEB_INF/lib directory of your web application.

� A ruleset with an XML XOM should be configured to run in multiple simultaneous
executions by configuring the pool of XML document drivers. This is done using the
ruleset.xmlDocumentDriverPool.maxSize ruleset property. The default value is 1.

� The toString() method performance could have a huge impact. If you are using the
execution trace, with the trace filter of setInfoBoundObjectByRule set to true, the
toString() is called for all bound objects by each executed rule.

7.4.2 Impact of execution mode on performance (trace and Decision
Warehouse)

Consider the following aspects of execution mode:

� No trace:

Execution without traces is the optimal mode in terms of memory usage and performance.

� Execution Trace:
78 IBM Operational Decision Management V8.0 Performance Tuning Guide

When you choose the execution mode with trace, you will experience the following side
effects:

– Memory usage increases when the execution trace is generated, the list of rules and
tasks is cached, and the rule events are generated.

– On sequential or Fastpath, the ruleset property ruleset.sequential.trace.enabled
set to true enables the generation of events when a rule is fired or a task is executed.
The side effect is a code generation that produces event and store mapping
information in the ruleset (with performance and memory impact).

– The response of the execution is bigger than the original one because the execution
trace is integrated. The execution trace size depends on the ruleset characteristics
(number of rules and tasks).

– The trace filtering could have a significant impact on the size of the execution trace and
performance.

� Decision Warehouse execution is divided into the following actions:

– This mode executes the rule with the execution trace on; figure this into the
performance cost.

– At the end of execution, a serialization of input and output parameters is done (BOM
serialization).

– A complete serialization to XML of the execution trace.

– A database insertion.

– You can choose from a list of filters (as ruleset properties) what should be saved in the
Decision Warehouse. To configure the execution trace, input and output parameters,
and execution events (tasks and rules executed), set the properties as shown in
Example 1.

Example 1 Ruleset properties

monitoring.filters=INFO_EXECUTION_EVENTS=true,INFO_INPUT_PARAMETERS=true,
INFO_OUTPUT_PARAMETERS= true, INFO_RULESET_PROPERTIES=false,
,INFO_INET_ADDRESS=true,INFO_EXECUTION_DURATION=true,INFO_TOTAL_RULES_FIRED=false,IN
FO_TOTAL_TASKS_EXECUTED=false, INFO_TOTAL_RULES_NOT_FIRED=false,
INFO_TOTAL_TASKS_NOT_EXECUTED=false, INFO_RULES_NOT_FIRED=false,
INFO_TASKS_NOT_EXECUTED=false, INFO_EXECUTION_DURATION=false, INFO_RULES=false,
INFO_TASKS=false, INFO_SYSTEM_PROPERTIES=false, INFO_WORKING_MEMORY=false,
INFO_BOUND_OBJECT_BY_RULE=false

– The Decision Warehouse is customizable. Further customization can be done through
the Decision Warehouse extension point for better execution performance. You can
define how data can be persisted or queried through the extension point. An
asynchronous version of decision warehouse for WebSphere Application Server
version 7 is available as a contribution at the following website:

http://www-01.ibm.com/support/docview.wss?uid=swg21433167

Note: In the current benchmarks for the Decision Warehouse, the key bottleneck is the
database insertion. This makes database tuning important if you use the Decision
Warehouse without configuration changes.
Chapter 7. Decision Server Rules: Rule Execution Server tuning 79

http://www-01.ibm.com/support/docview.wss?uid=swg21433167

7.4.3 Architecture of your application choice (Engine, JSE, or Java EE Rule
Execution Server)

The choice of an architecture depends on your decision service characteristics. The following
list notes the service characteristic considerations:

� Smallest memory consumption:

– The engine alone without the Rule Execution Server

� No concurrent execution:

– Use the engine alone
– Use JSE Rule Execution Server

� Concurrent executions:

– Use JSE Rule Execution Server
– Use Java EE Rule Execution Server

� Integration with (EJB, MDB, POJO, SCA):

– Use Java EE Rule Execution Server

� Call as a web service:

– Use HTDS on XML XOM
– Use MTDS on Java XOM

7.4.4 Impact of topology on performance (JSE embedded, Java EE shared,
Java EE isolated)

The rule execution server can be deployed on three different topologies. Consider the
following information when evaluating the impact of the topology on performance:

� Java EE Shared:

– The XU is deployed to the application server and shared (and possibly accessed) by all
of the applications that are deployed to the server.

This is analogous to installing a device driver into an operating system, in that the
application server has become globally enhanced with ruleset execution capabilities.

– From an administrative perspective, one version of the XU is deployed. That version
can be easily upgraded, started, stopped, and monitored using the application server
management console or other tools.

– The XU should be deployed on all nodes of the cluster.

– The Java EE ruleSessions types are available.

� Java EE Isolated:

– The XU is deployed within a single application.

– This is a more advanced deployment option, which enables multiple applications to be
deployed to the same server and allows each application to use completely separate
versions of Decision Server Rules classes.

– The XU Jrules-res-xu-xxx.rar is embedded in the customer application.

– The resource is scoped to the customer application.

– The clustering is linked to the customer application.

– The Java EE ruleSessions types are available.
80 IBM Operational Decision Management V8.0 Performance Tuning Guide

� JSE Embedded:

– The XU is deployed as a simple Java Standard Edition JAR. Rules implement a
lightweight J2C container and the Resource Adapter.

– This mode allows the XU (and hence, the Rule Execution Server) to be used outside a
Java EE application server.

– The application server no longer manages the Resource Adapter in this mode and the
Decision Server Rules pooling infrastructure is used.

– The resource is JSE and scoped to customer application.

– Only the JSE ruleSession is available.

� Performance impacts:

– The performance of Java EE shared and Java EE isolated Rule Execution Server are
equivalent.

– The performance of JSE embedded is similar to Java EE shared, but the pool cannot
be configured by the application server administrator.

7.4.5 Optimization of the XU pool size and parsing

The optimal XU pool size depends on the number of possible concurrent connections and the
number of rulesets to execute. The limit is reached by the memory consumption. On a
dual-core computer, a pool size of 50 is correct. A sizing methodology is available at the
following website:

http://www-01.ibm.com/support/docview.wss?uid=swg21400803

The following three scenarios illustrate how the performance overhead of ruleset parsing can
be minimized:

� Parsing at Rule Execution Server launch or first invocation of the ruleset. In this case, the
ruleset should be parsed before the first execution. You can force it with a dummy
execution or a call of the loadUptodateRuleset in IlrManagementSession API
(Management Session API).

� Update of a ruleset already in use. This can be fixed by using the asynchronous parsing.

� A ruleset that is used infrequently, such as once a day, sometimes is removed from the
pool running other rulesets. This can be fixed by setting ruleset.maxIdleTime to 0 on this
ruleset. The ruleset will then stay in the pool even it is not used by a session.

See the paper Minimizing the effect of ruleset parsing on the performance of Rule Execution
Server for details. You can access the paper at the following website:

ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/wsw14089usen/WSW14089USEN.PDF

7.4.6 Rule Execution Server and clustering

The Rule Execution Server supports clustering. Each XU is independent at pool level but
shares the same Rule Execution Server persistence. The XUs do not share a parsed ruleset.
Each time a ruleset is run, for the first time or if the ruleset is not in the pool on a node, the XU
will parse the ruleset.

Cluster-wide JMX Servers (as provided by most application servers) allow the Rule Execution
Server Management Console to discover and interact with multiple XUs. This occurs no
matter where or how they are deployed across the cluster. Providing a single administration
facility for all the rule engines deployed across a cluster of machines allows system
Chapter 7. Decision Server Rules: Rule Execution Server tuning 81

http://www-01.ibm.com/support/docview.wss?uid=swg21400803
http://www-01.ibm.com/support/docview.wss?uid=swg21400803/
http://publib.boulder.ibm.com/infocenter/brjrules/v7r0/index.jsp?topic=/ilog.rules.jrules.doc/html/api/html/ilog/rules/res/session/IlrManagementSession.html
http://publib.boulder.ibm.com/infocenter/brjrules/v7r0/index.jsp?topic=/ilog.rules.jrules.doc/html/api/html/ilog/rules/res/session/IlrManagementSession.html
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/wsw14089usen/WSW14089USEN.PDF
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/wsw14089usen/WSW14089USEN.PDF

administrators to gain an understanding of the deployment topology and diagnose runtime or
configuration errors.

7.5 Analyzing the status of the Rule Execution Server

The Rule Execution Server’s status is visible through a tool that is accessible using the Rule
Execution Server console. The console is typically available at http://hostName:port/res
where hostName and port are the host and HTTP port of the server.

7.5.1 Retrieving ruleset caching details from Rule Execution Server Console

You can get detailed ruleset caching information (XU dump) from the Rule Execution Server
Console. This data includes how many free connections there are in the pool, which rulesets
have been parsed, how much free memory is left, and so on.

To access ruleset caching information, complete the following steps:

1. Open the RES console, and click the Server Info tab.

2. Change the Log Level of the Rule Execution Server Console to Debug (Figure 7-2).

Figure 7-2 Access to the Execution Unit status

3. Click the XU you want to investigate (still on the Server Info tab, see Figure 7-3).

82 IBM Operational Decision Management V8.0 Performance Tuning Guide

Figure 7-3 Execution Unit choice

4. In the panel that opens, click View (Figure 7-4).

Figure 7-4 Access to the detailed status of Rule Execution Server

5. After the view opens, you can review the cache status. You can see which rulesets have
been parsed and are stored in the cache. Figure 7-5 on page 83 shows that one ruleset is
currently stored in the cache.

Figure 7-5 Status of Rule Execution caches
Chapter 7. Decision Server Rules: Rule Execution Server tuning 83

7.6 Performance of Rule Execution Server with sequential
algorithm

We ran some tests to show the impact that a number of different factors can have on
performance when you are using the sequential algorithm. For more information about
selecting the appropriate algorithm, see 6.3, “Rule engine execution mode choice” on
page 67. The number of rules fired is 10% of the total number of rules. The only difference is
the number of rules. The tests were performed with an HTTP injector. This injector created
between 20 and 45 virtual users calling the same web application to drive the ruleset through
a POJO rule session or a web service call within HTDS. All benchmarks ran on IBM
WebSphere Application Server V8, with Operational Decision Management 8.0 installed as a
shared instance of Rule Execution Server (for example, Java EE shared topology).

7.6.1 Execution of ruleset through a POJO rule session using a Java XOM

We ran a test scenario through a POJO rule session using a Java XOM. We ran the test with
three different ruleset sizes to demonstrate the impact this has. Each rule is a row of a
decision table. We also ran the same tests with full execution trace enabled, and also with a
limited execution trace enabled. The limited trace is composed of execution events and
input/output parameters. In our tests, we obtained results showing that:

Without execution trace enabled:

� The throughput of a ruleset with 2912 rules was up to three times higher than the
throughput of a ruleset with 8736 rules.

� The throughput of a ruleset with 500 rules was up to 17 times higher than the throughput
of a ruleset with 8736 rules.

With limited execution trace enabled:

� The tests achieved between 65% and 90% of the throughput without execution trace,
depending on ruleset size.

With full execution trace enabled:

� The tests achieved around 30% of the throughput without execution trace.

In summary:

� The number of rules has a significant effect on the throughput.

� Using filtered trace has a limited effect on the throughput.

� Using full trace has a significant effect on the throughput.

7.6.2 Execution of ruleset through a POJO rule session using an XML XOM

We ran the same tests described in 7.6.1, but using an XML XOM instead of a Java XOM. In
our tests, we obtained results showing that:

Without execution trace enabled:

� The throughput of a ruleset with 2912 rules was up to three times higher than the
throughput of a ruleset with 8736 rules.

� The throughput of a ruleset with 500 rules was up to 15 times higher than the throughput
of a ruleset with 8736 rules.
84 IBM Operational Decision Management V8.0 Performance Tuning Guide

With limited execution trace enabled:

� The tests achieved between 83% and 95% of the throughput without execution trace,
depending on ruleset size.

With full execution trace enabled:

� The tests achieved around 65% of the throughput without execution trace.

In summary:

� The number of rules has a significant effect on the throughput.

� Using filtered trace has a limited effect on the throughput.

� Using full trace has a significant effect on the throughput.

7.6.3 Ruleset performance comparison of XML XOM and Java XOM

In comparing the results obtained in 7.6.1 and 7.6.2, we observed that the throughput of a
ruleset using a Java XOM can be up three times higher than the throughput of an equivalent
ruleset using an XML XOM.

In summary:

� In most cases, a Java XOM provides better performance than an XML XOM.

7.6.4 Execution with HTDS (web service invocation)

We ran similar scenarios to those described in 7.6.1 and 7.6.2, but using HTDS rather than
using a POJO rule session. In our tests, we obtained results showing that:

Using a Java XOM:

� With a ruleset with 500 rules the throughput using a POJO rule session was up to twice
the throughput of a similar ruleset invoked using HTDS.

� With a ruleset with 8736 rules the throughput using a POJO rule session was similar to the
throughput of a similar ruleset invoked using HTDS.

We also compared using a Java XOM with using an XML XOM, when using HTDS. In our
tests, we obtained results showing that:

� The throughput of a ruleset using a Java XOM was approximately twice the throughput of
an equivalent ruleset using an XML XOM.

In summary:

� With small rulesets HTDS is slower than a POJO execution, but with larger rulesets the
difference is less noticeable.

� In most cases, a Java XOM provides better performance than an XML XOM.

7.6.5 Loading time with the sequential algorithm

The first time a ruleset is executed, the ruleset is parsed. This can mean that the response
time for the first execution is significantly higher than for subsequent executions. As an
example, we measured the response times of the first invocations for the tests described in
7.6.1, 7.6.2 and 7.6.4. In our tests, we obtained results showing that:
Chapter 7. Decision Server Rules: Rule Execution Server tuning 85

� The type of XOM (Java or XML) and the use of POJO rule session or HTDS has a very
small effect on the loading time.

� With a ruleset with 2912 rules, the load time is approximately half the load time of a ruleset
with 8736 rules.

� With a ruleset with 500 rules, the load time is approximately 10 times faster than the load
time of a ruleset with 8736 rules.

7.6.6 Conclusion

The following conclusions are based on the test results:

� The size of the rulesets has a significant impact on both the execution performance and
the load time.

� Java XOM execution is faster than XML XOM.

� Usage of full execution trace has a significant performance impact, but using a filtered
trace reduces the impact.

� For small rulesets, HTDS performance is slower than POJO rule session, but this is less
noticeable with larger rulesets.

7.7 Performance of Rule Execution Server with fastpath
algorithm

We also ran some tests to show the impact that the algorithm choice and the number of rules
can have on performance. These tests were the same as described in 7.6, “Performance of
Rule Execution Server with sequential algorithm” on page 84, but configured to use the
fastpath algorithm, rather than sequential.

7.7.1 Performance comparison of XML XOM and Java XOM and ruleset sizes
using fastpath

We ran a test scenario through both a POJO rule session and HTDS using a Java XOM and
an XML XOM, all using the fastpath algorithm. We ran the test with three different ruleset
sizes to demonstrate the impact this has. Each rule is a row of a decision table. In our tests,
we obtained results showing that:

Using a POJO rule session:

� With a ruleset with 500 rules, the throughput using a Java XOM was approximately twice
the throughput of a similar ruleset using an XML XOM.

� With a ruleset with 2912 rules, the throughput using a Java XOM was approximately 50%
higher than the throughput of a similar ruleset using an XML XOM.

� With a ruleset with 8736 rules, the throughput using a Java XOM was approximately 10%
higher than the throughput of a similar ruleset using an XML XOM.

� Using a Java XOM, the throughput of a ruleset with 2912 rules was twice the throughput of
a ruleset with 8736 rules.

� Using a Java XOM, the throughput of a ruleset with 500 rules was seven times higher than
the throughput of a ruleset with 8736 rules.
86 IBM Operational Decision Management V8.0 Performance Tuning Guide

Using HTDS:

� For most ruleset sizes, the throughput using a Java XOM was approximately 20% higher
than the throughput of a similar ruleset using an XML XOM.

� Using a Java XOM, the throughput of a ruleset with 500 and 2912 rules was twice the
throughput of a ruleset with 8736 rules.

In summary:

� In most cases, a Java XOM provides better performance than an XML XOM.

� The number of rules has a significant impact on the throughput.

7.7.2 Performance comparison of sequential and fastpath algorithms

We compared the performance of the scenarios using sequential and fastpath algorithms. In
our tests, we obtained results showing that:

Using a POJO rule session:

� With a ruleset with 500 rules, the throughput using fastpath was approximately twice the
throughput of a similar ruleset using the sequential algorithm.

� With a ruleset with 2912 rules, the throughput using fastpath was approximately three
times higher than the throughput of a ruleset using the sequential algorithm.

� With a ruleset with 8736 rules, the throughput using fastpath was approximately five times
higher than the throughput of a ruleset using the sequential algorithm.

Using HTDS:

� With a ruleset with 500 rules, the throughput using fastpath was similar to the throughput
of a similar ruleset using the sequential algorithm.

� With a ruleset with 2912 rules the throughput using fastpath was approximately four times
higher than the throughput of a ruleset using the sequential algorithm.

� With a ruleset with 8736 rules, the throughput using fastpath was approximately five times
higher than the throughput of a ruleset using the sequential algorithm.

In summary:

� In most cases, fastpath provides better performance than sequential. This is especially
true if using decision tables (as our tests did). Tests not using decision tables might not
see such a large performance difference.

� The performance difference between fastpath and sequential is particularly noticeable
with larger rulesets.

7.7.3 Loading time with the fastpath algorithm

We ran similar tests to those described in 7.6.5, “Loading time with the sequential algorithm”
on page 85, but using the fastpath algorithm. In our tests, we obtained results showing that:

� With a ruleset with 2912 rules, the load time is approximately 40% of the load time of a
ruleset with 8736 rules.

� With a ruleset with 500 rules, the load time is approximately six times faster than the load
time of a ruleset with 8736 rules.

� With a ruleset with 500 rules, the load time using sequential is approximately three times
faster than the load time of a similar ruleset using fastpath.
Chapter 7. Decision Server Rules: Rule Execution Server tuning 87

� With a ruleset with 2912 and 8736 rules, the load time using sequential is approximately
50% faster than the load time of a similar ruleset using fastpath.

In summary:

� The loading time is longer with fastpath than with sequential.

� The delta is bigger on small rulesets than on large rulesets.

7.7.4 Conclusion

The following conclusions are based on the test results:

� The size of the rulesets has a significant impact on both the execution performance and
the load time.

� Java XOM execution is faster than XML XOM.

� If using a decision table, consider the use of the fastpath algorithm. In our tests, it showed
significantly improved performance over sequential.

7.8 Performance of Rule Execution Server with RetePlus
algorithm

We ran some tests to show the effect that the algorithm choice and the number of rules can
have on performance when using the RetePlus algorithm. These tests were the same as
described in 7.6, “Performance of Rule Execution Server with sequential algorithm” on
page 84, but configured to use the RetePlus algorithm, rather than sequential.

7.8.1 Performance comparison of XML XOM and Java XOM and ruleset sizes
using RetePlus

We ran a test scenario using a POJO rule session using a Java XOM and an XML XOM, all
using the RetePlus algorithm. We ran the test with three different ruleset sizes to demonstrate
the impact this has. Each rule is a row of a decision table. In our tests, we obtained results
showing that:

� For all ruleset sizes, the performance of Java XOM and XML XOM was similar.

� The throughput of a ruleset with 500 rules and one with 2912 rules was similar.

� The throughput of a ruleset with 500 and 2912 rules was three times higher than the
throughput of a ruleset with 8736 rules.

7.8.2 Performance comparison of sequential and RetePlus algorithms

We compared the performance of the scenarios using sequential and RetePlus algorithms. In
our tests, we obtained results showing that:

Using a POJO rule session:

� With a ruleset with 500 rules, the throughput using sequential was approximately 20 times
higher than the throughput of a ruleset using the RetePlus algorithm.

� With a ruleset with 2912 and 8736 rules, the throughput using sequential was
approximately four times higher than the throughput of a ruleset using the RetePlus
algorithm.
88 IBM Operational Decision Management V8.0 Performance Tuning Guide

� RetePlus does not scale well when there are concurrent executions of a ruleset.

7.8.3 Loading time with the RetePlus algorithm

We ran similar tests to those described in 7.6.5, “Loading time with the sequential algorithm”
on page 85, but using the RetePlus algorithm. In our tests, we obtained results showing that:

� With a ruleset with 2912 rules, the load time is approximately 20% of the load time of a
ruleset with 8736 rules.

� With a ruleset with 500 rules, the load time is approximately 10% of the load time of a
ruleset with 8736 rules.

� With all ruleset sizes, the load time using sequential is approximately half the load time of
a similar ruleset using RetePlus.

7.8.4 Conclusion

The following conclusions are based on the test results, and our observations:

� The size of the rulesets has a significant impact on both the execution performance and
the load time.

� The RetePlus algorithm had slower load times, and much slower throughput compared to
the sequential algorithm.

� RetePlus is an algorithm for stateful execution with rule chaining, otherwise you should
consider sequential or Fastpath.

7.9 Performance impact of the number of concurrent users

We ran some tests with 1000 rules, with a Java XOM, with a variable number of concurrent
users using the three algorithms RetePlus, sequential, and fastpath.

The tests show the scalability of Decision Server Rules when increasing the number of
concurrent users.

During our tests, we measured both the response time and throughput, and noted the
following observations:

� With sequential and fastpath, the average response time stays relatively stable when the
number of concurrent users is smaller than the number of cores.

� With sequential and fastpath, when the number of concurrent users is higher than the
number of cores, the response time increases quickly.

� The peak throughput with fastpath was obtained with 50 users.

� The peak throughput with sequential was obtained with 30 users.

� With RetePlus, the response time increases significantly with just five concurrent
executions.

� The peak throughput with RetePlus was obtained with five users.

7.9.1 Conclusion

The following conclusions are based on the test results, and our observations. The number of
concurrent users has the following impacts:
Chapter 7. Decision Server Rules: Rule Execution Server tuning 89

� The throughput becomes stable, depending on the complexity of the ruleset, when the
number of concurrent users is higher than the number of cores.

� The average response time increases with the number of concurrent users, especially
when the number of concurrent users is higher than the number of cores.

� Fastpath and sequential are more scalable than RetePlus.
90 IBM Operational Decision Management V8.0 Performance Tuning Guide

Chapter 8. Decision Server Rules: Tuning
Decision Warehouse

The Decision Warehouse is a module that logs decisions in production applications or in the
testing through Decision Validation Services.

The following topics are covered in this chapter:

� Decision Warehouse features
� Impact of the Decision Warehouse on rule execution
� Optimization of the Decision Warehouse

8

© Copyright IBM Corp. 2013. All rights reserved. 91

8.1 Decision Warehouse interface

Figure 8-1 shows the interface used to search for and view decisions stored in the
warehouse.

Figure 8-1 Decision Warehouse

8.2 Decision Warehouse features

The following list identifies many of the features of Decision Warehouse:

� Logs execution trace
� Input/Output data
� Execution results
� Executed tasks
� Rules fired
� Queries
� Open API to connect third-party BI tools

Figure 8-2 shows an overview of the Decision Warehouse functions.
92 IBM Operational Decision Management V8.0 Performance Tuning Guide

Figure 8-2 Decision Warehouse overview

8.3 Impact of the Decision Warehouse on rule execution

The following characteristics will have a significant impact on the performance of an
application:

� The complexity of the object model:

If the ruleset signature contains input/output parameters that have a large amount of data,
it can take a long time to serialize and persist.

� The number of rules within the ruleset:

Performance degrades as the number of rules fired increases.

� The level of detail you want to capture:

The more execution details you want to capture, the longer it takes to complete the
execution.

In general, the performance of the Decision Warehouse depends on the following factors:

� The performance of generating execution trace.

� The serialization performance, which divides into two principal cases for the input/output
parameter serialization to BOM (depending on the size of the ruleset parameters) and the
serialization of the execution trace (depending on the ruleset characteristics, such as the
number of rules, the number of rules fired, and so on).

� The performance of the database server and the network used to access it.

Third-party BI Tool

Existing Database
Execution Components

Rule Execution Server

Management Console

Historical TracesDecision Traces

Operational System Reporting and Analysis

Store Traces

Query

Transform &
Store

Generate Report

Extension
BORROWERBORROWER

LOANLL NANANLOANLOANLOAN
Chapter 8. Decision Server Rules: Tuning Decision Warehouse 93

8.4 Optimization of the Decision Warehouse

There are several ways to optimize the Decision Warehouse:

1. The Decision Warehouse is configured inside the ruleset properties. With this, you can
choose the information to save. For example, there are configurable parameters to specify
the ruleset properties to optimize performance. You can choose which execution
information you want to capture from the following options:

– Executed ruleset path
– Decision ID
– Rules fired
– Tasks executed
– Input/output parameters
– Execution duration
– Tasks not executed
– Rules not fired
– All the names of the rules/tasks
– Number of rules/tasks executed
– Custom execution output

2. You can remove the BOM serialization. See Optimizing Decision Warehouse at the
following website:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.rule
s.res.managing/topics/tpc_res_config_optim_dw_intro.html

3. You can choose, through a list of filters (as ruleset properties), to define what is saved in
the Decision Warehouse. Use the RES console, shown in Figure 8-3, to configure
execution trace, input and output parameters, and execution events (tasks and rules
executed).
94 IBM Operational Decision Management V8.0 Performance Tuning Guide

http://publib.boulder.ibm.com/infocenter/brjrules/v7r0/index.jsp?topic=/ilog.rules.jrules.doc/Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global758.html

Figure 8-3 Monitoring options

The properties should be set as shown in Example 1.

Example 1 Ruleset properties

monitoring.filters=INFO_EXECUTION_EVENTS=true,INFO_INPUT_PARAMETERS=true,
INFO_OUTPUT_PARAMETERS= true, INFO_RULESET_PROPERTIES=false,
,INFO_INET_ADDRESS=true,INFO_EXECUTION_DURATION=true,INFO_TOTAL_RULES_FIRED=fal
se,INFO_TOTAL_TASKS_EXECUTED=false, INFO_TOTAL_RULES_NOT_FIRED=false,
INFO_TOTAL_TASKS_NOT_EXECUTED=false, INFO_RULES_NOT_FIRED=false,
INFO_TASKS_NOT_EXECUTED=false, INFO_EXECUTION_DURATION=false, INFO_RULES=false,
INFO_TASKS=false, INFO_SYSTEM_PROPERTIES=false, INFO_WORKING_MEMORY=false,
INFO_BOUND_OBJECT_BY_RULE=false,

4. The performance of the Decision Warehouse depends on the database. For example, the
database should be optimized to handle CLOB data, not in a generic way, but for the
specific case of the ruleset.

– Further customization can be done through the Decision Warehouse extension point
for better execution performance. You can define how data can be persisted or queried
through the extension point. See Decision Warehouse customization sample at the
following website:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.r
ules.samples/res_smp_topics/smp_res_dwcustom.html

– You can also implement your own asynchronous logging of the data captured with the
Decision Warehouse feature. There is a sample in the product which shows the
reference architecture for using the extension point. An asynchronous version of
Chapter 8. Decision Server Rules: Tuning Decision Warehouse 95

http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/topic/com.ibm.websphere.ilog.jrules.doc/Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global1777.html
http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/topic/com.ibm.websphere.ilog.jrules.doc/Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global1777.html
http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/topic/com.ibm.websphere.ilog.jrules.doc/Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global1777.html
http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/topic/com.ibm.websphere.ilog.jrules.doc/Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global1777.html

decision warehouse for WebSphere Application Server version 7 is available as a
contribution at the following website:

http://www-01.ibm.com/support/docview.wss?uid=swg21433167

– There is a section in the documentation that describes the ways to optimize execution
performance when using Decision Warehouse. See Optimizing Decision Warehouse at
the following website:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.r
ules.res.managing/topics/tpc_res_config_optim_dw_intro.html
96 IBM Operational Decision Management V8.0 Performance Tuning Guide

http://www-01.ibm.com/support/docview.wss?uid=swg21433167/
http://publib.boulder.ibm.com/infocenter/brjrules/v7r0/index.jsp?topic=/ilog.rules.jrules.doc/Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global758.html

Chapter 9. Decision Server Rules: Decision
Validation Services tuning

Decision Validation Services is a module that developers use to test and simulate rules
against scenarios. It gives users the ability to validate usage scenarios to ensure correctness
of rulesets, or to see the potential problems. Decision Validation Services simulate the impact
of business rule changes, saving you from potential critical errors before production. Tuning
in this environment ensures clarity and performance in simulated situations as well as saving
you time in development.

The following topics are covered in this chapter:

� Overview of Decision Validation Services
� Recommendations for DVS usage
� Recommendations to optimize big simulations

9

© Copyright IBM Corp. 2013. All rights reserved. 97

9.1 Overview of Decision Validation Services

Figure 9-1 shows an overview of the Decision Validation Services (DVS) architecture.

Figure 9-1 Decision Validation Services overview

The following list notes the main features of the DVS:

� Out-of-the-box ruleset testing (Decision Center)
� Business impact simulation (Decision Center)
� Scenario configuration and customization (Rule Designer)
� Audit - Decision Warehouse (Rule Execution Server)

9.2 Recommendations for DVS usage

Executing a test suite or simulation can be a long operation, depending on the number of
rules and the number of scenarios to execute. The following list gives the main steps that are
performed during the operation:

1. Generate a ruleapp archive with the set of rules to test.

2. Deploy this ruleapp to a Rule Execution Server console.

3. Trigger the execution of the ruleapp on the Scenario Service Provider, which will pass the
call to the XU.

4. Obtain the report.

Most of the time consumed on Decision Center will take place during ruleset generation. For
a ruleset of 10000 business rules, it takes 6 minutes for the first ruleset generation and 10

Rule Team Server (RTS)

Renderers

Scenario

KPI Result

Scenario Service Provider (SSP)

Scenario ProviderXOM

Key Performance Indicator

Rule Execution Server

Deploy Testing
Ruleset

Run

Report

Rule Studio

Deploy Extensions

DVS Project

Format

Generate Extension Templates

Excel
Configuration

Runner

Run

Decision WarehouseRule Team Server
Repository

Rules
Test suites
Simulations
Run reports

Rules Fired
Transaction

data
98 IBM Operational Decision Management V8.0 Performance Tuning Guide

seconds for a second ruleset generation (for example, if the IRL is already cached). The rest
of the time is taken in the Rule Execution Server parsing the generated archive and executing
the scenarios.

9.2.1 Hints

The preferred practice is to run Rule Execution Server and Decision Center on two different
machines. Using two separate machines allows Rule Execution Server to consume some
resources executing a test suite or simulation, and leaves Decision Center resources (CPU
and memory) unaffected.

Rule Execution Server setting recommendations
Each time a test suite execution is triggered from Decision Center, a new ruleapp is created,
deployed, and parsed on the Rule Execution Server. This means that the parsing cost on
Rule Execution Server cannot be avoided in the context of DVS. From the tests performed, a
10,000-rule ruleset took almost all of the 768 MB of RAM allocated for the Virtual Machine
(VM). This means that without any further configuration, if a second execution launched just
after the first one, it would require a new item in the XU pool. This occurrence then provokes
an out of memory state for the Virtual Machine hosting the Rule Execution Server.

The following configurations are considered a preferred practice and help reduce out of
memory and other performance issues:

� Dedicate a Rule Execution Server instance to DVS. Do not try to use a production Rule
Execution Server for DVS tests or simulations.

� Set the size of the XU pool1 according to the total available memory or maximum amount
of memory of a ruleset. For example, if you have one GB allocated for your Virtual
Machine and are executing a ruleset that takes 300 MB of memory, the size of the pool for
the XU must be less than six. The size of the pool must not be under two because a test
suite runs two rulesets, plus the ruleset to test, and the ruleset that contains the tests.

� Set the size of the Scenario Service Provider pool2 to the same size as the XU pool. On
WebSphere Application Server, the creation of threads is delegated to work managers; by
default it is wm/default. When this is done, the XU pool (and thus the memory of the VM)
will not be overloaded, nor will there be a bottleneck for test suite or simulation executions.

� If you have a huge volume of scenarios, the report options usage has a great impact on
performance because the Decision Warehouse stores the execution results.

For more information about configuration of DVS, refer to the following website:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.rules.d
esigner.test/topics/con_configuring_ssp.html

9.2.2 Decision Warehouse optimization

Trace settings impact performance. Tuning them is an important optimization point for the
overall performance of simulations and test scenarios. Their data is valuable, so you will need
to consider balance in your selections. To reduce the size of Decision Warehouse trace in the
Decision Validation Service, you can use the contribution available at the following website:

http://www-01.ibm.com/support/docview.wss?uid=swg21438208

1 Set ra.xml of eXecution Unit, or configured in the JCA connection factory of the application server.
2 For non-WebSphere Application Server platforms, see JRULES_JOBS_POOL_SIZE in the web.xml of the

Scenario Service Provider WAR file.
Chapter 9. Decision Server Rules: Decision Validation Services tuning 99

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.rules.designer.test/topics/con_configuring_ssp.html
http://www-01.ibm.com/support/docview.wss?uid=swg21438208

9.3 Recommendations to optimize big simulations

Starting with Operation Decision Management version 8, the Scenario Service Provider
supports a new parallel execution mode. This mode reduces the time that it takes to run
large-scale simulations and to calculate the corresponding KPI values. With this new
execution mode, a simulation is no longer limited to a single thread but can be executed on
several threads on the same Scenario Services Provider.

Use the new parallel simulation API to access this new mode, especially at KPI level and
when configuring the Scenario Service Provider pool.

For more information and a sample description of parallel execution, visit the following
website:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dcenter.samples
/topics/smp_tsdvs_scenarioprovider.html

An article named Running large-scale simulations with WebSphere Operational Decision
Management V 8 explains in detail the usage of this execution mode. It is available at the
following website:

https://www.ibm.com/developerworks/bpm/bpmjournal/1209_brunot/1209_brunot.html

The parallel execution API is documented at the following website:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.rules.d
esigner.test/topics/tpc_testsimulation.html
100 IBM Operational Decision Management V8.0 Performance Tuning Guide

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dcenter.samples/topics/smp_tsdvs_scenarioprovider.html
https://www.ibm.com/developerworks/bpm/bpmjournal/1209_brunot/1209_brunot.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.rules.designer.test/topics/tpc_testsimulation.html

Chapter 10. Decision Center tuning

Designed to enhance productivity, WebSphere ILOG Decision Center brings unsurpassed
levels of usability and sophistication to business rule management. Distributed business
teams can collaborate using a powerful, easy-to-use web environment to create, manage,
and deploy business rules.

The following topics are covered in this chapter:

� Decision Center consoles
� Manage rules across the enterprise with confidence
� General guidelines and considerations on Decision Center
� Memory footprint of Decision Center
� CPU of Decision Center
� Tuning to maintain database performance for Decision Center
� Tuning of Decision Center

10
© Copyright IBM Corp. 2013. All rights reserved. 101

10.1 Decision Center consoles

The Decision Center has two consoles, the enterprise console and the business console. The
enterprise console focuses on the needs of analysts and administrators; the business
console is designed for business process experts. See Figure 10-1.

Figure 10-1 Decision Center Overview

10.2 Manage rules across the enterprise with confidence

Decision Center is easy to learn, use, and deploy. Business users can manage rules quickly
and securely, saving time and money. Audit reporting and access to a central rule repository
give users the peace of mind they need to focus on other tasks, keeping them ahead in a
competitive business environment.

The WebSphere ILOG Decision Center gives you the ability to:

� Author and edit rules using a natural language and customizable business vocabulary.
Rules can be expressed in graphical formats, such as decision tables and decision trees.

� Simplify rule projects through Smart Views (user configurable navigation panes), filters,
and reports.

� Manage collaboration with role-based permissions, access controls, and customizable
rule metadata properties.

� Facilitate rule maintenance with templates, point-and-click editors, error checking, and
versioning.

� Ensure rule quality with customizable queries, rule analysis, and visual comparisons of
changes between versions.

Business Console (new) for
business experts

to manage and govern
lifecycle of decisions

Decision Center Enterprise Console Decision Center Business Console

Enterprise Console (current) for
advanced business analysts and

administrators
to fully develop and govern decisions

Repository

Decision
Artifacts Versioning

Access and
Control
102 IBM Operational Decision Management V8.0 Performance Tuning Guide

� Add powerful testing and simulation capabilities using Decision Center’s integration with
WebSphere ILOG Decision Validation Services.

� Extend rule management across the enterprise through Decision Center’s integration with
WebSphere ILOG Rule Solutions for Office.

10.3 General guidelines and considerations on Decision Center

Decision Center makes heavy use of CPU, memory, and database resources. To ensure
scalability, the hardware architecture should be set up to support usage requirements.
Although it is difficult to give precise recommendations due to the variety of possible
configurations, this chapter should help you understand where possible bottlenecks can
occur.

10.4 Memory footprint of Decision Center

Decision Center is designed to be accessed by several users at the same time. Each time a
user accesses the Decision Center URL, an HTTP session is created on the server and filled
with several objects. Those objects include the current IlrSession to connect to Decision
Center, some Java beans to support the model of the JSF components used in the interface,
and some web components (guided editor and decision table editor). The memory footprint
that is required for a session is difficult to estimate because it depends upon many factors.
Those factors include what actions are performed through the GUI, the virtual machine (VM),
and the structure of the repository.

However, we can provide a specific example. After browsing a repository with 10,000 rules,
expanding and collapsing nodes in the rule explorer, previewing some rules, editing one rule
and generating a ruleset (with IRL already cached), the memory footprint of a session is
around 10 MB.

10.4.1 Memory consumption and ruleset generation

During the ruleset generation, around 150 MB of short-lived objects are created. This can
cause some issues if many users are performing this operation at the same time.

Ruleset generation and semantic queries are the main tasks that consume memory.

A ruleset generation is performed by any of the following uses:

� Deployment to Rule Execution Server
� RuleApp generation
� Rule Analysis features like consistency checking and completeness report
� TestSuite and simulation execution

The semantic queries are queries that contain at least one of the following sentences:

� May apply when
� May become applicable when
� May lead to a state where
� Modifies the value of
� Uses the phrase
� Uses the value of
Chapter 10. Decision Center tuning 103

http://publib.boulder.ibm.com/infocenter/brjrules/v7r0/index.jsp?topic=/ilog.rules.jrules.doc/Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global1592.html

10.4.2 Hints

If you believe the number of users connected simultaneously to a single server will not fit into
the memory that is allocated for a single VM, you should deploy Decision Center to a cluster
of servers and use load balancing. When deploying this way, HTTP sessions are dispatched
according to the server’s available memory.

Another memory-related parameter to consider is the number and size of the vocabularies
that are used in a Decision Center repository. The vocabulary of a specific project is stored in
memory the first time it is loaded and is shared across sessions. By default, vocabularies are
stored in a pool of 10 instances. After 10 instances, other vocabularies are soft-referenced so
that the VM can free the memory if needed. The same pooling algorithm applies to instances
of BOMs and variable providers.

The semantic queries are slower than other queries that could be transformed as SQL
queries. Do not use a semantic query to create a smart view, otherwise RTS will call this
semantic query each time the Explore tab is clicked.

10.5 CPU of Decision Center

Depending on the number of users and which operations they frequently perform when using
Decision Center, the number of CPUs can be critical. Parsing a BAL rule or a decision table is
an atomic operation that takes a lock on the vocabulary instance to be used. In addition, as
test results have revealed, most of the long-running operations (ruleset generation, reporting,
and so on) make heavy use of the CPU. This means that if many users are accessing the
same project at the same time, browsing the repository, or running long operations such as
ruleset generation, the shared vocabulary might become a bottleneck. This reinforces the
need to deploy Decision Center on a cluster.

10.6 Tuning to maintain database performance for Decision
Center

Most Decision Center operations perform SQL queries.

Hints
Because some queries can be time consuming, it is a preferred practice to deploy the
application server and the database on different machines to force the distribution of the load
between Java computing and database access. This will improve the user experience when
multiple users are connected to the repository.

We suggest that you set the JDBC connection pool of the data source to a number that is
equivalent to the maximum number of users that will simultaneously connect to Decision
Center. If the pool is too small, users might end up getting connection timeouts when their
sessions are trying to access the database.

We also suggest that you set the statement cache size in WebSphere Application Server data
source properties section to 50 or 100 instead of 10. Decision Center uses a large number of
different SQL requests. The performance impact is around 10% when you generate a ruleset
or when you have several users using Decision Center.
104 IBM Operational Decision Management V8.0 Performance Tuning Guide

10.7 Tuning of Decision Center

The tuning of Decision Center is accessible in the enterprise console of Decision Center.

10.7.1 Installation options

The installation manager of the enterprise console provides access to the main options of
Decision Center (Figure 10-2).

Figure 10-2 Configuration of Decision Center
Chapter 10. Decision Center tuning 105

Modifying the build storage option limits the memory usage and stores on disk the cache of
compiled business rules so this cache is persistent. To get those results, navigate to the
installation manager and set the configuration parameter teamserver.build.archive.storage
to file instead of memory, as shown in Figure 10-3.

Figure 10-3 Modify the build storage option
106 IBM Operational Decision Management V8.0 Performance Tuning Guide

10.7.2 Project options

The options of a project are configurable in the Project tab of the enterprise console
(Figure 10-4).

Figure 10-4 Project configuration
Chapter 10. Decision Center tuning 107

The tuning of the rule project shown in Figure 10-5 limits memory consumption and CPU
usage at rule edition and compilation time.

Figure 10-5 Project tuning

Use the following steps to tune the rule project build:

1. Disable the Archive parsing flag option. This can be accessed by selecting Project
Edit project options Check the ruleset archive.

2. Use Automatic build to avoid a huge ruleset generation cost at first ruleset
generation.

3. Disable Rule analysis checks.

10.7.3 Performance improvements for Decision Center

The performance of Decision Center has been optimized since version 7.1, especially the
building of rulesets.

To measure the improvement, we built a benchmark comparing the full build on Rule Team
Server 7.1 versus Decision Center 8.0. The benchmark is built on four rule projects with
different sizes. (Figure 10-6 on page 109).
108 IBM Operational Decision Management V8.0 Performance Tuning Guide

Figure 10-6 Rule Projects characteristics

Decision Center delivers a new ruleset build chain.

Our testing achieved performance gains from 50% to 150% versus Rule Team Server
V7.1.1.1.

This optimization offers a better scalability of Decision Center as the performance gains
increase with rule project size.

� Four sizes of ruleset from 14560 to 116480 rules
� Ruleflow of 5 to 40 Sequential tasks

� Each rule is a row of decision table

� The XOM is Java based and has the following characteristics

File size (bytes)

Attributes

Classes

Enum types

Methods

Packages

3604

65

6

0

10

4

SumStatistic
Chapter 10. Decision Center tuning 109

110 IBM Operational Decision Management V8.0 Performance Tuning Guide

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this paper.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� Making Better Decisions Using IBM WebSphere Operational Decision Management,
REDP-4836

� Flexible Decision Automation for Your zEnterprise with Business Rules and Events,
SG24-8014

� Implementing an Advanced Application Using Processes, Rules, Events, and Reports,
SG24-8065

� Proven Practices for Enhancing Performance: A Q & A for IBM WebSphere ILOG BRMS
7.1, REDP-4775

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� IBM WebSphere Operational Decision Managment Version 8.0 Information Center

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.help.doc/infocent
er_homepage.html

� IBM Operational Decision Manager Version 8.0.1 information Center

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.he
lp.doc%2Finfocenter_homepage.html

� IBM Operational Decision Management home page:

http://www-01.ibm.com/software/decision-management/operational-decision-managem
ent/

� IBM WebSphere Application Server V8.0 Information Center:

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.home.doc
_wasinfo_v8r0/welcome_ic_home.html

� IBM WebSphere MQ Information Center:

http://www-01.ibm.com/software/integration/wmq/library/index.html
© Copyright IBM Corp. 2013. All rights reserved. 111

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.help.doc/infocenter_homepage.html
http://www-01.ibm.com/software/decision-management/operational-decision-management/
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.home.doc_wasinfo_v8r0/welcome_ic_home.html
http://www-01.ibm.com/software/integration/wmq/library/index.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.help.doc%2Finfocenter_homepage.html

� Configuring and tuning WebSphere MQ for performance on Windows and UNIX

http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/0712
_dunn.html

� Processing messages with the WebSphere Application Server V7 and V8 WebSphere MQ
messaging provider activation specifications:

http://www.ibm.com/developerworks/websphere/library/techarticles/1110_titheridg
e/1110_titheridge.html?ca=drs-

� Asynchronous trace capture for Decision Warehouse

http://www-01.ibm.com/support/docview.wss?uid=swg21433167

� Rule Execution Server engine pool sizing

http://www-01.ibm.com/support/docview.wss?uid=swg21400803

� Reducing the size of Decision Warehouse trace when running scenario suit

http://www-01.ibm.com/support/docview.wss?uid=swg21438208

� Running large-scale simulations with WebSphere Operational Decision Management V 8

https://www.ibm.com/developerworks/bpm/bpmjournal/1209_brunot/1209_brunot.html

� Webphere ILOG BRMS Blog

https://www.ibm.com/developerworks/mydeveloperworks/blogs/brms/?lang=en

� WebSphere MQ Family - Performance Reports

https://www-304.ibm.com/support/docview.wss?uid=swg27007150

� Service Integration Bus Explorer

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communi
tyview?communityUuid=fe21f954-66dd-40c2-bfc4-45eb0b7d51eb

� Minimizing the effect of ruleset parsing on the performance of Rule Execution Server :

ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/wsw14089usen/WSW14089USEN.PDF

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
112 IBM Operational Decision Management V8.0 Performance Tuning Guide

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/0712_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1110_titheridge/1110_titheridge.html?ca=drs-
http://www-01.ibm.com/support/docview.wss?uid=swg21433167
http://www-01.ibm.com/support/docview.wss?uid=swg21400803
https://www.ibm.com/developerworks/bpm/bpmjournal/1209_brunot/1209_brunot.html
https://www.ibm.com/developerworks/mydeveloperworks/blogs/brms/?lang=en
http://www-01.ibm.com/support/docview.wss?uid=swg21438208
https://www-304.ibm.com/support/docview.wss?uid=swg27007150
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=fe21f954-66dd-40c2-bfc4-45eb0b7d51eb
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=fe21f954-66dd-40c2-bfc4-45eb0b7d51eb
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/wsw14089usen/WSW14089USEN.PDF

®

REDP-4899-00

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Redpaper™

IBM Operational Decision
Management V8.0
Performance Tuning Guide

Design choices for
events and business
rule applications

Runtime tuning for
events and rule
applications

Tuning for Decision
Center

IBM Operational Decision Management (ODM) is a family of products
used by IT and business users to create and manage business decision
logic throughout their organization. This IBM Redpaper publication
offers advice on all aspects of performance, including hardware,
architecture, authoring, quality of service, monitoring, and tuning. The
advice is based upon preferred practices and experience gained from
real customer situations.

The book is aimed at a wide ODM audience, including IBM employees
and customers, and provides useful information to new and
experienced users.

Although the product family is known as IBM WebSphere Operational
Decision Management (WODM), at V8.0, with V8.0.1 the the name is
now simply IBM Operational Decision Manager (ODM). The
performance information in this paper is based on V8.0 of this product
family and differences introduced with V8.0.1 are pointed out.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this paper
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Overview
	1.1 IBM Operational Decision Management
	1.2 Publication structure

	Chapter 2. General performance tuning
	2.1 Hardware and monitoring
	2.2 Tuning the Java virtual machine (JVM)
	2.2.1 Garbage collection policies
	2.2.2 Java heap size
	2.2.3 JVM preferred settings

	Chapter 3. Decision Server Events: Designing for performance
	3.1 High-level considerations for optimal design
	3.2 Optimizing throughput by minimizing disk access
	3.2.1 Decision Server disk access points
	3.2.2 Additional disk access points

	3.3 Performance impact of durability
	3.4 Relative performance of simple and complex event rules
	3.4.1 Simple event rules
	3.4.2 Simple event rules with a context ID
	3.4.3 Complex event rules

	3.5 Event rule ordering
	3.6 Context scoped business objects
	3.6.1 Memory usage
	3.6.2 CSBO performance

	3.7 Multiple event rules and synthetic events
	3.7.1 Event rule descriptions

	3.8 Impact of the technology connectors on performance

	Chapter 4. Decision Server Events: Run time performance tuning
	4.1 High-level considerations for run time tuning
	4.2 Tuning the number of event rule processing threads
	4.3 The impact of history on performance
	4.3.1 Recording history
	4.3.2 Performance impact of history
	4.3.3 Tuning history processing

	4.4 The impact of logging and tracing
	4.4.1 Configuring trace and log files
	4.4.2 Performance impact of tracing

	4.5 Relative performance of the JMS providers
	4.5.1 WebSphere Application Server default messaging vs WebSphere MQ
	4.5.2 Retrieving events from WebSphere MQ

	4.6 Tuning JMS messaging provider: WebSphere Application Server default messaging
	4.6.1 Concurrent processing: WebSphere Application Server default messaging
	4.6.2 Miscellaneous WebSphere Application Server default messaging tuning

	4.7 Tuning the JMS messaging provider: WebSphere MQ JMS messaging
	4.7.1 Tuning the queue manager
	4.7.2 Tuning the WebSphere Application Server for WebSphere MQ JMS

	4.8 Database tuning
	4.8.1 General tuning
	4.8.2 Database entry management

	4.9 High availability and high performance
	4.9.1 High availability and performance when using WebSphere Application Server default messaging
	4.9.2 High availability and performance when using WebSphere MQ as the messaging provider
	4.9.3 Tuning for large clusters
	4.9.4 Disabling the WatchReset Message Driven Bean

	4.10 Technology connectors tuning
	4.10.1 Increasing the concurrency of the action connectors
	4.10.2 Using a selector to retrieve actions from the action topic
	4.10.3 Controlling the batch size for the JDBC event connector
	4.10.4 Controlling the File System event connector event delivery rate
	4.10.5 Distributing events across a cluster when using the JDBC and File System technology connectors with WebSphere Application Server default messaging

	4.11 Monitoring performance
	4.11.1 Performance Monitoring Infrastructure (PMI)
	4.11.2 Service Integration Bus Performance tool
	4.11.3 Service Integration Bus Explorer tool
	4.11.4 WebSphere MQ Explorer Tool
	4.11.5 Hardware monitoring

	4.12 Advice on benchmarking applications
	4.13 Diagnosing performance problems
	4.13.1 Obtaining diagnostic information
	4.13.2 The number of messages on the event destination is growing over time
	4.13.3 Other potential performance issues

	Chapter 5. Decision Server Rules: Rule Designer tuning
	5.1 Tuning of build
	5.2 Tuning of the synchronization
	5.3 Guidelines for benchmarking an application
	5.4 Analyzing the rule project characteristics

	Chapter 6. Decision Server Rules: Rule engine execution tuning
	6.1 Overview of the rule engine
	6.2 Academic benchmarks usage
	6.3 Rule engine execution mode choice
	6.3.1 Types of objects used by your rules
	6.3.2 Impact of rule actions
	6.3.3 Impact of tests in rule conditions
	6.3.4 Impact of priorities set on rules
	6.3.5 Impact of business user role
	6.3.6 Performance goals

	6.4 Tips and tricks for business rule applications
	6.5 Rule engine performance cost breakdown

	Chapter 7. Decision Server Rules: Rule Execution Server tuning
	7.1 Features of the Rule Execution Server
	7.2 Basic configuration for good performance
	7.3 Impact of ruleset characteristics on performance
	7.4 Hints
	7.4.1 Impact of ruleset XOM on performance
	7.4.2 Impact of execution mode on performance (trace and Decision Warehouse)
	7.4.3 Architecture of your application choice (Engine, JSE, or Java EE Rule Execution Server)
	7.4.4 Impact of topology on performance (JSE embedded, Java EE shared, Java EE isolated)
	7.4.5 Optimization of the XU pool size and parsing
	7.4.6 Rule Execution Server and clustering

	7.5 Analyzing the status of the Rule Execution Server
	7.5.1 Retrieving ruleset caching details from Rule Execution Server Console

	7.6 Performance of Rule Execution Server with sequential algorithm
	7.6.1 Execution of ruleset through a POJO rule session using a Java XOM
	7.6.2 Execution of ruleset through a POJO rule session using an XML XOM
	7.6.3 Ruleset performance comparison of XML XOM and Java XOM
	7.6.4 Execution with HTDS (web service invocation)
	7.6.5 Loading time with the sequential algorithm
	7.6.6 Conclusion

	7.7 Performance of Rule Execution Server with fastpath algorithm
	7.7.1 Performance comparison of XML XOM and Java XOM and ruleset sizes using fastpath
	7.7.2 Performance comparison of sequential and fastpath algorithms
	7.7.3 Loading time with the fastpath algorithm
	7.7.4 Conclusion

	7.8 Performance of Rule Execution Server with RetePlus algorithm
	7.8.1 Performance comparison of XML XOM and Java XOM and ruleset sizes using RetePlus
	7.8.2 Performance comparison of sequential and RetePlus algorithms
	7.8.3 Loading time with the RetePlus algorithm
	7.8.4 Conclusion

	7.9 Performance impact of the number of concurrent users
	7.9.1 Conclusion

	Chapter 8. Decision Server Rules: Tuning Decision Warehouse
	8.1 Decision Warehouse interface
	8.2 Decision Warehouse features
	8.3 Impact of the Decision Warehouse on rule execution
	8.4 Optimization of the Decision Warehouse

	Chapter 9. Decision Server Rules: Decision Validation Services tuning
	9.1 Overview of Decision Validation Services
	9.2 Recommendations for DVS usage
	9.2.1 Hints
	9.2.2 Decision Warehouse optimization

	9.3 Recommendations to optimize big simulations

	Chapter 10. Decision Center tuning
	10.1 Decision Center consoles
	10.2 Manage rules across the enterprise with confidence
	10.3 General guidelines and considerations on Decision Center
	10.4 Memory footprint of Decision Center
	10.4.1 Memory consumption and ruleset generation
	10.4.2 Hints

	10.5 CPU of Decision Center
	10.6 Tuning to maintain database performance for Decision Center
	10.7 Tuning of Decision Center
	10.7.1 Installation options
	10.7.2 Project options
	10.7.3 Performance improvements for Decision Center

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

